Curriculum Structure for Master of Technology in Heat Power Engineering (MTech HP) (Pattern2024)

With Effect From A.Y. 2024-25

Matoshri Education Society's

Matoshri College of Engineering and Research Centre, Eklahare, Nashik (Autonomous)

NBA and NAAC Accredited, Approved by All India Council for Technical Education, New Delhi, Affiliated to SavitribaiPhule Pune University, College Code: 5177 Website: https://engg.matoshri.edu.in Phone: +91 0253 2406600, 18002336602

Eklahare, Near Odhagaon, off Nashik-Aurangabad Highway, Nashik, Maharashtra 422105

Curriculum Structure for Post Graduate Programmes- MTech&MCA (Pattern 2024)

Matoshri College of Engineering and Research Centre, Eklahare, Nashik has been granted the academic autonomous status from academic year 2024-25 by University Grant Commission. The Academic autonomous status has been considered as an opportunity for imparting comprehensive education. The academic autonomous status can be utilized to implement the National Education Policy (NEP 2020) effectively. The institute has a prudent plan to incorporate necessary dynamism in academic structure to march towards the vision of the institute and develop the research and skill oriented human resources contributing to the development of the nation.

With a focus on staying at the forefront of educational innovation, the institution diligently prepares curricula that are both dynamic and industry-aligned. This process entails meticulous planning and collaboration to ensure the development of comprehensive programs catering to the evolving needs of students and industries alike.

The highlights of post graduate (PG) programmes Master of Technology (MTech) and Master of Computer Applications (MCA)curriculum structure:

- Every Post Graduate programme is of two years duration with four semesters.
- The curricula have been designed adhering to the NEP guidelines and norms.
- Efforts have been taken to design the curricula which are unambiguous and self-explanatory.
- Students have to earn 84 credits for the award of MTech/MCA degree

Credit Requirement and Eligibility for the PG Programme

Eligibility first year PG admissions will be as per guidelines provided by Admission Regulating Authority of Government of Maharashtraand guidelines of NEP2020.

Examination and Passing

Rules of Passing

- To pass the course, the student has to earn a minimum of 40 percent marks in End Semester exam and 40 percent average marks (In-Semester marks + End-Semester marks) in the exam head.
- Students can earn the credit of the course if he/she passes the course with appropriate grade.
- The student is declared as PASS in the corresponding year if he/she earns the credits of all the courses of the year.
- A student will be awarded the master's degree if he/she earns 84 credits.

Rules of A.T.K.T.

The students who is not detained to appear in examination either in first semester or second semester of First year and, has filled the form of examination is eligible to take admission in second year of PG course.

Exit Point

For those who join 2 year PG programmes, there shall only be one exit point. Students who exit at the end of 1st year shall be awarded a Postgraduate Diploma

This document includes-

- <u>Credit Distribution Across Semesters and Course Code Nomenclature</u>
- Examination Headsand Assessment Schemes
- Various Courses' Categories, Description and Abbreviation
- <u>Program Outcomes</u>
- Broad Courses' Categories, and Credit Distribution
- <u>Curriculum for semester I</u>
- <u>Curriculum for semester II</u>
- <u>Curriculum for semester III</u>
- <u>Curriculum for semester IV</u>

	toshri College of Engineering and Research Centre (A Curriculum for Master of Technology in Heat Power Engineering (MTech HPI	
	Table of Contents	
Sr. No	Description	Page No.
1.	Semester I	
	24P1401: Advanced Fluid Mechanics	14
	24P1402: MOOC-1	16
	24P1402: MOOC-1 24P1403: Research Methodology	10
	24P1403: Research Methodology 24P1404: Advanced Thermodynamics and Combustion	19
	24P1405-A: Measurements and Controls	22
	24P1405-B: Advanced Energy Storage Technologies	24
	24P1405-C: Advanced Internal Combustion Engines	26
	24P1405-D: Hybrid and Electric Vehicles	28
	24P1405-E: Generic Elective (GE) **	30
	24P1406: Thermal Engineering Lab-I	31
	24P1407: Program Elective Course-1Lab	33
	24P1408: Study of Indian Constitution	34
2.	Semester II	
	24P1409:MOOC_2	37
	24P1410: Advanced Heat Transfer	38
	24P1411: Design of Heat Exchanger	40
	24P1412-A: Battery Thermal Management System	42
	24P1412-B: Environmental Engineering And Pollution Control	44
	24P1412-C: Air Conditioning Systems	46
	24P1412-D: Alternate Fuels For IC Engines	48
	24P1412-E: Generic Elective (GE)**	50
	24P1413: Thermal Engineering Lab-II	51
	24P1414: Program Elective Course-2 Lab	52
	24P1415: Project and Finance Management	53
	24P1416-: Human Rights	55
11.	Semester III	
	24P1417: MOOC_3 Cyber Security	58
	24P1418: Computational Fluid Dynamics	60
	24P1419-A: Cogeneration and Waste Heat Recovery Systems	62
	24P1419-B: Gas Turbines and Jet Propulsion	64
	24P1419-C: Cryogenic Engineering	66
	24P1419-D: Advanced Power Plant Engineering	68
	24P1419-E: Generic Elective (GE) **	70
	24P1420: Thermal Engineering Lab-III	71
	24P1421: Company Law and Corporate Governance	72
	24P1422: Dissertation Stage-I	74
12.	Semester IV	
	24P1423: Internship	76
	24P1424: MOOC_4	79
	24P1425: Skill Development in Thermal Systems/MOOC	80
	24P1426: Dissertation Stage-II	83

Table 1: Total Credits and Total Marks for Master of Technology (MTech)/MCA											
Semester	Semester Total Credits Total Marks										
Ι	22	650									
II	22	650									
III	20	600									
IV	20	600									
Total	84	2500									

Table 2: Nomenclature for Course Codes										
Format for Course Codes-										
YY -	Year of Course launch		YY	U/P/D	NN	MM				
U/P/D-	U : Undergraduate P - Postgraduate D - Doct	toral								
NN-	Branch Code MM- Course Numbe Post Graduate Programme	NN		Post G	radua	ite Prog	ramme			
10MTech Geotechnical Engineering13				MTech Electrical Power Systems						
11 MTech Data Science 14 MTech Heat Power Engineering										
12	MTech VLSI and Embedded System	15 Master of Computer Applications (MCA)								

	Table 3: Examination Headsand AssessmentSchemes									
Exam Head	Abbre viatio n	In Seme (40% of T	End Semester Exam							
		In_Sem_Exam_1 (20%)	In_Sem_Exam_2 (20%)	(60% of Total Marks)						
Theory	ТН	CAT/CCE based on 20% curriculum	CAT/CCE based on 20% curriculum	Theory examination based on 60% curriculum						
Project	PROJ	Progress Review I with Demonstration, Presentation, Oral & Report	Progress Review II with Demonstration, Presentation, Oral & Report	Activity, Presentation, Demonstration, Oral & Report as applicable						
Internship	INT	Progress Review I with Activity, Presentation,Demonstr ation, Oral & Report as applicable	Progress Review II with Activity, Presentation, Demonstration, Oral & Report as applicable	Activity, Presentation, Demonstration, Oral & Report as applicable						
Practical	PR	performance, demonstr	ed on experiment/ activity ration, Presentation, Oral port as applicable	Experiment,activity performance, demonstration, Presentation, Oral & Report, journal as applicable						
Term work	TW	performance, demonstr	ed on experiment/ activity ration, Presentation, Oral port as applicable	Activity, Experiment performance, demonstration, Presentation, Oral & Report, journal as applicable						
Seminar	SEMI	Mid-semester review literature study, draf report(s) and or	Discussions, Presentation, Report(s), publicationas applicable							
Continuous Assessment Test	CAT	Class test examination to assess and evaluate a student's progress with descript or objective questions as measure of the student's knowledge and skills in online offline mode.								
Continuous and Comprehens ive Evaluation	CCE	Examination that evaluate learners' abilities based on various dimensions viz academic performance, work experience, skills, coordination, agility, innovation teamwork, public speaking, behavior, and similar as a measure of knowledge skills and attitude.								

Table 4: Various Courses' Categories, Description and Abbreviation								
Broad Category	Description	Abbreviations						
	Programme Core Course	PCC						
Drogrom Courses	Programme Core CourseLaboratory	PCCL						
Program Courses	Programme Elective Course	PEC						
	Programme Elective CourseLaboratory	PECL						
Multidisciplinary Courses	Multidisciplinary Course	MDC						
Wind userphilary Courses	Generic Elective	GE						
Experiential Learning	Project	PROJ						
Courses	Internship / On Job Training	INT / OJT						
	Practical	PR						
	Internship	INT						
Course Type/	Theory	TH						
Teaching Learning	Tutorial	TUT						
Schemes / Examination	Lecture	Lect						
Heads	Laboratory Course	Lab						
IItaus	Term work	TW						
	Seminar	SEMI						
MOOC	Massive Open Online Courses by NPTEL under SWAYAM	MOOC						
Project Management, Finance and Governance	Project Planning/ Entrepreneurship Development / Engineering Economics / Management/ Corporate Laws/ Corporate Governance	PMFG						
In Semester Examination	In_Sem_Exam	ISE						
Continuous Assessment Test	Continuous Assessment Test	CAT						
End Semester Examination	End_Sem_Exam	ESE						
Continuous &	Continuous & Comprehensive	CCE						
Comprehensive Evaluation	Evaluation							
Bloom's Taxonomy	Bloom's Taxonomy	BL						
Course Outcome	Course Outcome	СО						
Program Outcome	Program Outcome	РО						

	Table 5: Program Outcomes
At the	end of Post Graduate Program, a student would have:
PO1	Problem Solving and Research Skill:
	An ability to independently carry out research /investigation and development work to
	solve practical problems
PO2	Communication:
	An ability to write and present a substantial technical report/document
PO3	Lifelong Learning: Students should be able to demonstrate a degree of mastery over the
	area as per the specialization of the program. The mastery should be at a level higher than
	the requirements in the appropriate bachelor program
PO4	Critical Thinking, Project Management and Finance, Skills and knowledge:
	Demonstrate advanced knowledge and skills understanding management principle to
	analyze complex engineering problems critically, and apply the same to, manage
	projects efficiently in respective disciplines and multidisciplinary environments after
	consideration of economic and financial factors while working as individual or in teams
	or as a leader in a team.
PO5	Collaborative and Multidisciplinary work:
	An ability to think critically and apply appropriate logic, analysis, judgment and decision
	making and to function as an effective member or leader of engineering teams to achieve
	common goals.
PO6	Usage of Modern Tools, Ethical Practices and Social Responsibility:
	An ability to use appropriate techniques, skills, and modern engineering tools necessary
	for engineering practice and commit to professional ethics and responsibilities

At the end o	Program Specific Outcomes At the end of Post Graduate Program,							
PSO1	Professional skills – Apply the knowledge and skills in diverse domains of mechanical engineering.							
PSO2	Problem solving skills – Identify, formulate, design, investigate and solve engineering problems of thermal, industrial and inter-disciplinary fields by using various engineering tools to meet the needs of the industry with best quality practices.							

Preface

This is **Version 2** of the **MTech Heat Power EngineeringCurriculum 2024**. The following changes have been madecompared to Version 1:

1. Modification in Semester II Course Structure (Table No. 7) – Inclusion of the course Human Rights.

2. Updated Course Contents for Semesters II, III, and IV.

	Matoshri College of Engineering and Research Centre (Autonomous) Curriculum Structure for Master of Technology(M.Tech) in Heat Power Engineering (Course 2024)													
	Table No 6: First Year Master of Technology (F.Y. MTech)													
				1	Semest	ter I								
	Examination and Marks Teaching Scheme (% of Total Curriculum and Marks)													
		Courses		Teach	ing Sc	heme	(% OI	Total Cui	End_Sem	Marks)		Cre	dit	
	Courses			H	rs/Wee	ek	In_Sem (40		End_Sem Exam (60%)	Marks	Credit			
Course	Course	Title of Course	Exam	Lect	TUT	PR	CAT	CCE	ESE	Total	ТН	TUT	PR	Total
Code	Туре	The of Course	Head	Leci	101	rĸ	CAI	UCE	ESE	Total	п	101	rĸ	Total
24P1401	MDC	Advanced Fluid Mechanics	TH	04	-	-	20	20	60	100	04	-	-	04
24P1402	PCC	MOOC-1	TH	04	-	-	20	20	60	100	04	-	-	04
24P1403	PCC	Research Methodology	TH	02	-	-	20	20	60	100	02	-	-	02
24P1404	PCC	Advanced Thermodynamics and Combustion	TH	04	-	-	20	20	60	100	04	-	-	04
24P1405	PEC	Program Elective Course-1	TH	04	-	-	20	20	60	100	04	-	-	04
24P1406	PCCL	Thermal Engineering Lab-I	PR	-	-	04	20	0	30	50	-	-	02	02
24P1407	PECL	Program Elective Course-1Lab	PR	-	-	02	20	0	30	50	-	-	01	01
24P1408	PMFG	Study of Indian Constitution	SEMI	-	01	-	20	0	30	50	-	01		01
		Total		18	18 01 06 260 390		390	(50	18 01 03		03	22		
	Total Hours/ Week				25			650		650		22		22

Elective-1							
Course Code	Course Name						
24P1405-A	Measurements and Controls						
24P1405-B	Advanced Energy Storage Technologies						
24P1405-C	Advanced Internal Combustion Engines						
24P1405-D	Hybrid and Electric Vehicles						
24P1405-E	Generic Elective (GE) **						

MOOC_1: NPTEL Courses under SWAYAM for AY 2024-25							
Course Code Course Name							
24P1402-A	Applied Numerical Methods						
24Р1402-В	Applied Thermodynamics for Engineers						
24P1402-C	Energy Conservation and Waste Heat Recovery						
24P1402-D	Sustainable Power Generation Systems						

****GE:** An elective course chosen generally from an unrelated discipline/subject, with an intention to seek. A core course offered in a discipline/subject may be treated as an elective by other discipline/subject and vice versa.

	Matoshri College of Engineering and Research Centre (Autonomous) Curriculum Structure for Master of Technology(M.Tech) in Heat Power Engineering (Course 2024)													
	Table No 7: First Year Master of Technology (F.Y. MTech) Semester II													
						heme	(% of		ion and Ma rriculum and					
	Courses				ng se s/Wee		In Sem	Exam. %)	End Sem. Exam. (60%)	Marks		Cr	edit	
Course Code	Course Type	Title of Course	Exam Head	Lect	TUT	PR	CAT	CCE	ESE	Total	ТН	TUT	PR	Total
24P1409	MDC	MOOC_2	TH	02	-	-	10	10	30	50	02	-	-	02
24P1410	PCC	Advanced Heat Transfer	TH	04	-	-	20	20	60	100	04	-	-	04
24P1411	PCC	Design of Heat Exchanger	TH	04	-	-	20	20	60	100	04	-	-	04
24P1412	PEC	Program Elective Course-2	TH	04	-	-	20	20	60	100	04	-	-	04
24P1413	PCCL	Thermal Engineering Lab-II	PR	-	-	04	4	0	60	100	-		02	02
24P1414	PECL	Program Elective Course-2 Lab	PR	-	-	04	4	0	60	100	-	-	02	02
24P1415	PMFG	Project and Finance Management	SEMI	-	01	02	20	0	30	50	-	01	01	02
24P1416	AEC	Human Rights	TW - 02 - 20		30	50	-	02	-	02				
	Total Total Hours/ Week			14	03 27	10	26	60 650	390	650	16	01 22	05	22

	Elective-2									
Course Code Course Name										
24P1412-A	2-A Battery Thermal Management System									
24P1412-B Environmental Engineering And Pollution Control										
24P1412-C Air Conditioning Systems										
24P1412-D Alternate Fuels For IC Engines										
24Р1412-Е	Generic Elective (GE)**									

MOOC_2: NPTEL Courses under SWAYAM for AY 2024-25						
Course Code Course Name						
24P1409-A	Energy Resources and conversion processes					
24Р1409-В	Cryogenic Engineering					
24P1409-C	Conduction And Convection Heat Transfer					
24P1409-D	Two Phase Flow And Heat Transfer					

****GE:** An elective course chosen generally from an unrelated discipline/subject, with an intention to seek. A core course offered in a discipline/subject may be treated as an elective by other discipline/subject and vice versa.

	Matoshri College of Engineering and Research Centre (Autonomous) Curriculum Structure for Master of Technology(M.Tech) in Heat Power Engineering (Course 2024)													
	Table No 8: Second Year Master of Technology (S.Y. MTech) Semester III													
Examination and Marks Teaching Scheme Examination and Marks (% of Total Curriculum and Marks)														
Courses				ng se s/Wee		In_Sem Exam (40%) End_Sem (60%) Crea			edit					
Course Code	Course Type	Title of Course	Exam Head	Lect	TUT	PR	CCE	CCE CCE		Total	TH TUT PR To		Total	
24P1417	PCC	MOOC_3 Cyber Security	TH	04	-	-	20	20	60	100	04	-	-	04
24P1418	PCC	Computational Fluid Dynamics	TH	04	-	-	20 20		60	100	04	-	-	04
24P1419	PEC	Program Elective Course -3	TH	04	-	-	20 20		60	100	04	-	-	04
24P1420	PCCL	Thermal Engineering Lab-III	Engineering Lab-IIIPR-0220		0	30	50	-	-	01	01			
24P1421	PMFG	Company Law and Corporate Governance	SEMI	-	01	-	20		30	50	-	01	-	01
24P1422	PROJ	Dissertation Stage-I	PROJ	-	-	12	40 40		120	200	-	-	06	06
	Total			12 01 14 240 3		360	600	12	01	07	20			
	Total Hours/ Week				27			600		000		20		20

Elective-3						
Course Code	Course Name					
24P1419-A	Cogeneration and Waste Heat Recovery Systems					
24P1419-B Gas Turbines and Jet Propulsion						
24P1419-C	Cryogenic Engineering					
24P1419-D	Advanced Power Plant Engineering					
24Р1419-Е	Generic Elective (GE) **					

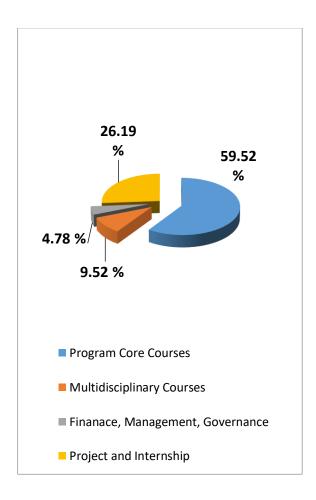
MOOC_3: NPTEL Courses under SWAYAM for AY 2025-26							
Course Code	Course Name^						
24P1417-A	^Note: Course Names will be declared as per						
24Р1417-В	availability of NPTEL courses of 12/16 weeks						
24P1417-C	available in that particular year for the semester.						
24P1417-D							

****GE:** An elective course chosen generally from an unrelated discipline/subject, with an intention to seek. A core course offered in a discipline/subject may be treated as an elective by other discipline/subject and vice versa.

	Matoshri College of Engineering and Research Centre (Autonomous) Curriculum Structure for Master of Technology(M.Tech) in Heat Power Engineering (Course 2024)													
	Table No 9: Second Year Master of Technology (S.Y. MTech)													
	Semester IV Examination and Marks													
							(0/ of							
Courses			reaching Scheme		(% of Total Curriculum and Marks)In_Sem Exam (40%)End_Sem Exam (60%)Marks		Marks	Credit						
Course Code	Course Type	Title of Course	Exam Head	Lect	TUT	PR	CCE	CCE	ESE	Total	ТН	TUT	PR	Total
24P1423	INT	Internship\$	TW	-	-	\$	40	40	120	200	-	-	08	08
24P1424	PCC	MOOC_4	TH	02	-	-	20	20	60	100	02	-	-	02
24P1425	SEC Skill Development in Thermal Systems/MOOC PR		PR	-	01	02	10	10	30	50	-	01	01	02
24P1426	PROJ	Dissertation Stage-II	PROJ	-	-	16	50	50	150	250	-	-	08	08
	Total			02	01	18	24	10	360	(00	02	01	17	20
	Total Hours/ Week				21			600		600		20		20

MOOC_4: NPTEL Courses under SWAYAM for AY 2025-26						
Course Code	Course Name^					
24P1424-A	^Note: Course Names will be declared as					
24P1424-B	per availability of NPTEL courses of					
24P1424-C	12/16 weeks available in that particular					
24P1424-D	year for the semester					

Urthangale


Prof. Dr. Jayant H. Bhangale Chairman BOS & Head- Mechanical Engineering

\$ Internship:

- Internship corresponding to major courses is to be completed after semester III Examinations and before commencement of semester IV of at least 180 hours/ 6 weeks; and it is to be assessed and evaluated in semester IV.
- It is almost imperative that the commencement of Semester IV needs to be approx. 3 weeks beyond the schedule.

Table 10: Broad Courses' Categories, and Credit Distribution									
Broad Category	Credit	Total Credit	%						
	Programme Core Course	30							
Program Courses Total Credit= 50	Programme Core Course Lab	05	35	41.66					
59.52% (19.00 % in online	Programme Elective Course	12	15	15 05					
mode)	Programme Elective Course Lab	03	15	17.85					
Multidisciplinary Courses Total Credit = 26 09.52%	Multidisciplinary Course	08	08	09.52					
Project	Study of Indian Constitution	01	04						
Management, Finance, and	Project Management and Finance	02		04.78					
Governance Total Credit =04 04.78%	Company Law and Governance	01							
Experiential Learning Courses	Project	14	22	26.19					
Total Credit =22 26.19%	Internship / On Job Training	08		20.17					
	Total	84	84	100					

Matoshri	College of Engineering & R	Research Co	entre, Nash	ik					
Mast	er of Technology in Heat Power	Engineering	g 2024-25						
First Year MTech Heat Power Engineering 24P1401: Advanced Fluid Mechanics									
TH: 03 Hours/Week	03	CAT:	20 Marks						
		CCE:	20 Marks						
		End_Sem:	60 Marks						
		Total:	100 Marks						
Prerequisite: Fluid Mech	anics (UG)								
Companion Course, if a	ny: Thermal Engineering Lab-I (2	24P1401)							
Course Objectives:									
1. To familiarize kinem	atic and dynamic behavior of flui	id flow							
2.To introduce Navier-	Stokes equation pertinent to stead	y and unstead	ly flows						
3. To introduce flow dy	namics over immersed bodies								
4. To impart the knowle	edge of boundary layers and Flow	separation							
5. To impart knowledge	e on Turbulent flow and Compres	sible Flow							
Course Outcomes: On co	ompletion of the course, learner w	vill be able to-	_		BL				
CO1: -Apply problem-solving skills for providing efficient solutions for the computational problem of fluid mechanics.									
1	al time engineering problems t	o model low	and high R	eynolds	3				
CO3: -Understand the co	ncept of potential flow, be able to on rotational and irrotational flow	•	utilize it to s	olve the	2				
	ge of perturbation and asymptotic		l analyze bou	ndary	3				
•	e equation for viscous flow, inclu	ding laminar	flow and turb	ulent					
•	problems in engineering to solve t	0			4				
CO6:-Identify, define, analyse, formulate, and solve problems related to fluid Mechanics by applying laws of Fluid mechanics.									
Course Contents									
Unit IGoverning Equations(08 Hrs)									
Review of Fluid Mechan	nics: - Definition and properties	of Fluids, Flu	id as continu	um, Cont	inuum				
model, Flow kinematics:	- Langragian and Eulerian desc	cription, Subs	stantial or To	otal deriv	atives,				
Basic flow-analysis techn	iques, Flow Patterns: Streamlines	, Streaklines,	and Pathlines						
Integral Relations for a	a Control Volume: Reynolds t	ransport theo	orem, Conserv	vation of	mass,				
Linear momentum equation	on, Energy equation, Frictionless	flow, Bernou	lli equation						
Differential Relations fo	r a Fluid Particle: Acceleration	n field of a f	luid, Differen	tial equat	ion of				
mass conservation, Diffe	rential Equation of linear mom	nentum, Diffe	erential equat	tion of E	nergy,				
Boundary Conditions for	the basic equations, Velocity Pote	ential, Stream	Function, Vo	rticity					
Boundary Conditions for the basic equations, Velocity Potential, Stream Function, VorticityUnit IINavier-Stokes Equations(10 H)									

Curriculum for Master of Technology (MTech) (wef 2024-25) Matoshri College of Engineering and Research Centre, Eklahare, Nashik (Autonomous)

Generalized form of NSE, Special forms: Euler equations, Bernoulli equation, **Exact solutions:** fully developed flow in channel, pipe, flow between concentric rotating cylinders, Couette flow, Stokes First problem (unsteady flow), Creeping flow past a sphere, cylinder.

Analysis of numerical schemes: concept of consistency, accuracy, stability and convergence; Error and stability analysis; some applications.

Unit III	Potential Flows		(10 Hrs)					
Elementary Plane-Flow	Solutions: Circulation, Superposition	of Plane-Flow Solution	ons: Irrotational					
vortex, Vortex Lines, vortex tubes, Vortex flow, Doublet, Flow past a circular cylinder, Magnus								
effect; Vortex Lines, vortex tubes.Role of viscosity in rotational and irrotational flows.,Kelivin's								
circulation theorem; K	utta-Joukowski lift theorem; Concept	of lift and drag. Role	of viscosity in					
rotational and irrotation	al flows.							

Unit IV	Boundary Layers	(09 Hrs)
Boundary layer assumpt	tions, equations, Flow over a flat plate, Similarity (Blasius) so	olution, Falkner-

Boundary layer assumptions, equations, Flow over a flat plate, Similarity (Blasius) solution, Falkner-Skan equation, Momentum integral method, Flow separation. Effect of pressure gradient, Separation, Secondary flow, perturbation techniques

|--|

Introduction, characteristics of turbulence, laminar-turbulent transition, Correlation functions, Mean and fluctuations, Governing equations, Turbulent boundary layer, Boundary conditions, shear stress models, Prandtl's mixing length, Velocity profile over a flat plate and in pipes, Equations for free shear layers: mixing layer, plane and axisymmetric jet, and wake, Various Turbulent Models, Taylor's theory of turbulence dispersion.

One-dimensional flow: Speed of sound, Variable cross-section flow, Converging diverging nozzle, Fanno and Rayleigh curve, Normal shock relations, Introduction to oblique shocks, Prandtl-Meyer expansion waves

Reference Books:

- 1. Advanced Fluid Mechanics, G. Biswas and K. Muralidhar, Narosa Publisher
- 2. Viscous Fluid Flow, F. M. White, Tata McGraw Hill
- 3. Boundary Layer Theory, H. Schlichting, Springer
- 4. Fluid Mechanics, Yunus A. Cengel, Tata McGraw Hill
- 5. Fluid Mechanics, F.M. White, Tata McGraw Hill Int.
- 6. Advanced Fluid Mechanics, G. Biswas and K. Muralidhar, Narosa Publisher

- 7. Viscous Fluid Flow, F. M. White, Tata McGraw Hill
- 8. Boundary Layer Theory, H. Schlichting, Springe

	@ The CO-PO Mapping Matrix										
CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2			
CO1	2	3	-	2	2	2	2	3			
CO2	2	3	3	2	3	3	2	3			
CO3	2	2	2	2	2	1	3	2			
CO4	2	2	3	2	2	3	2	2			
CO5	2	2	3	2	2	2	2	2			
CO6	2	2	3	2	2	3	2	2			

	Matoshri College of Engineering & Research Centre, Nashik							
	Master of Technology in Heat Power Engineering 2024-25							
	First Year MTech Heat Power Engineering							
	24P1402: MOOC-1							
	Teaching SchemeCreditExamination Scheme							
TH:	04 Hours/Week	04	CAT: 20 Marks					
			CCE: 20 Marks					
			End Sem: 60 Marks					
			Total: 100 Marks					

MOOC Courses for AY 2024-25

MOOC-1: Udemy Courses for AY 2024-25#					
Course Code	Course Name				
24P1402-A	Applied Numerical Methods for Engineering & Science Students				
24Р1402-В	Thermodynamics for Engineering Students				
24P1402-C	Waste Heat Recovery				
24P1402-D	Renewable Energy Technology: Green & Sustainable Development				

Matoshri (College of Engineerin	ng & Research	Centre, Nashik		
Maste	r of Technology in Heat	t Power Engineeri	ng 2024-25		
	First Year M.Tech Hea	at Power Enginee	ring		
	24P1403: Resear	ch Methodolog	y		
Yeaching Scheme Credit Examination Scheme					
TH: 02 Hours/Week	02	CAT:	20 Marks		
		CCE:	20 Marks		
		End_Sem:	60 Marks		
		Total:	100 Marks		
Companion Course, if any:					
Course Objectives:					
1. To understand basic c	oncepts of research and it	ts methodologies			
2. To learn the methodol	ogy to conduct the Litera	ture Survey			
3. To acquaint with the t	ools, techniques, and pro-	cesses for statistica	l analysis		
4. To effectively use and	d compare optimization t	echniques for solv	ing problems involving	single and	
multi-parameter cost f	functions.				
5. To understanding sam	pling theory and its appli	cation in research			
Course Outcomes: On comp	letion of the course, learn	her will be able to-		BL	
CO1: Identify fundamental co	oncepts, purposes, proces	ses, and motivation	s of research,	1	
encompassing various paradig					
CO2: Conduct a literature sur			lop a comprehensive	5	
research plan, identify diverse					
CO3: Conduct comprehensive	-	uding error and une	certainty assessments,	4	
and perform hypothesis testin CO4: Apply various optimiza	·	omplay ragaarah p	roblams involving	3	
single and multi-parameter co	1	1 1	ę	5	
comprehensive technical repo		the results and met	inouoiogies in u		
CO5: Apply sampling theory		s to determine sam	ple size for estimating	3	
population parameters in rese	-				
CO6: Develop the skills to co				5	
research statements, literature					
techniques, and sampling met					
complex, real-life problems, a	and present your findings	in a substantial tec	hnical report.		
	Course	Contents			

Unit IIntroduction(07 Hours)Evolution of Research Methodology: Meaning, nature, scope, and significance of research; Research
paradigm; The purpose and Products of Research; Reasons for doing research, Objectives of research,
Motivation for research; Postulates underlying scientific investigations; Types of research; Research

process and work flow.

Engineering Research-Why? Research Questions, Engineering Ethics, conclusive proof-what constitutes A research project-Why take on?

Case Studies (if any)	Code of Ethics, IEEE Code of Ethics, ACM Software Engineering Code of
	Ethics and ProfessionalPractice, Code of Ethics especially covering
	Engineering discipline, various aspects- environment, sustainable outcomes,
	employer, general public, & Nation, Engineering Disasters

Unit II	Literature Search and Review, developing Research	(07 Hours)
	Plan	
A	level 1 and in the othics 10 Tenner of mobility time. I am	1

Archival Literature, Why should engineers be ethical? Types of publications- Journal papers, conference papers, books, standards, patents, theses, trade magazine, newspaper article, infomercials, advertisement, Wikipedia & websites, Measures of research impact, Literature review, publication cost.

Developing Research Plan: Research Proposals, Finding a suitable research questions, The elements of research proposals-title, details, budget, Design for outcomes-1D data, 2D data, 3D data, N-D data, The research tools- Experimental measurements, numerical modeling, theoretical derivations & Calculations, curve matching.

	Engineering dictionary, Shodhganga, The Library of Co-	ngress, Research gate,				
Case Studies (if any)	Google Scholar, Bibliometrics, Citations, Impact Fac	ctor, h-index, I-index,				
	plagiarism, copyright infringement.					
Unit III	Statistical Analysis (07 Hours)					

Statistical Analysis: Introduction, Sources of error and uncertainty, One-Dimensional Statistics: combining errors and uncertainties, t-test, ANOVA statistics, example, Two-Dimensional Statistics: example, Multi-Dimensional Statistics: partial correlation coefficients, example, Null hypothesis testing

Case Studies (if any)	GNU PSPP Tool, SOFA, NOST-Dataplot	
Unit IV	Optimization Techniques	(07 Hours)

Optimization Techniques: Introduction, Two-parameter optimization methods: sequential uniform sampling, Monte Carlo optimization, Simplex Optimization method, Gradient Optimization method, Multi-parameter optimization methods, The cost function.

Case Studies (if any)Google Optimization Tools, OpenMDAO								
Unit VData Sampling(07 Hours)								
Sampling Fundamentals: Need for Sampling, Some Fundamental Definitions, Important Sampling								
Distributions, Central Limit Theorem, Sampling Theory, Sandler's A-test, Concept of Standard Error,								
Estimation, Estimating the Population Mean (µ), Estimating Population Proportion, Sample Size and its								
Determination								
Case Studies (if any) Determination of Sample Size through the ApproachBased on Precision Rate								

	Case Studies (II ally)	Determination of Sample Size through the ApproachBased on Precision Rate
and Confidence Level		and Confidence Level

Books:	
Textbooks:	
1. David V Thiel, "Research Methods- for Engineers", Cambridge University Press, ISBN:978-	-1-

2. Kothari C.R., "Research Methodology. New Age International, 2004, 2nd Ed; ISBN:13: 978-81-224-1522-3.

Reference Books:

107-61019-4

- 1. Caroline Whitbeck, "Ethics in Engineering Practice and Research", 2nd Ed., Cambridge University Press; ISBN :978-1-107-66847-8
- 2. Gordana DODIG-CRNKOVIC, "Scientific Methods in Computer Science", Department of Computer Science Malardalen University, Vasteas, Sweden; ISBN:91-26-97860-1

E-books:

- 1. Research Methodology
 - https://www.drnishikantjha.com/papersCollection/Research%20Methodology%20.pdf
- 2. Research Methodology Tools and Techniques- https://www.euacademic.org/BookUpload/9.pdf

MOOC Courses

- Introduction to Research- <u>https://onlinecourses.nptel.ac.in/noc23_ge36/preview</u>
- Research Methodology- <u>https://onlinecourses.nptel.ac.in/noc22_ge08/preview</u>
- Introduction to Research- https://nptel.ac.in/courses/121106007

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	3	2	3	2	2	2	1	1
CO2	3	3	3	2	3	3	2	1
CO3	3	3	2	2	2	2	1	1
CO4	3	3	3	2	2	3	2	2
CO5	3	3	3	2	2	3	2	2
CO6	3	3	3	2	2	3	2	2

Matoshri (College of Engineering &	& Research Centre, Na	ashik				
Maste	r of Technology in Heat Po	wer Engineering 2024-25					
	First Year MTech Heat Pe	ower Engineering					
24P140 4	4:Advanced Thermody	namics and Combustic	on				
Teaching Scheme Credit Examination Scheme							
TH: 04 Hours/Week	04 CAT: 20 Marks						
		CCE: 20 Marks					
		End_Sem: 60 Marks					
		Total: 100 Marks					
Prerequisite: Engineering	and Applied Thermodynami	cs at UG					
Companion Course, if an	y: Thermal Engineering Lab	-I (24P1406)					
Course Objectives:							
1.To provide the sufficient	knowledge of thermodynam	ics to apply in real engineer	ring problem	ıs			
2. To understand phase ch	nange processes of pure subs	stances, other Equations of	f State and 1	aws of			
thermodynamics							
3. Toacquirethe knowledge	e of irreversibility and analys	is of entropy and exergy					
4. To familiarize the stude	nts about the thermodynamic	relations and process and	their use toa	nalysis			
the given thermal applicati				•			
• •	anism of combustion of fuel	and Composition of gas mi	xture				
	mpletion of the course, learned	1 0		BL			
CO1 :-Understand properties of pure substances and other ideal gas equations							
CO2 :-Apply the concepts of laws of thermodynamics and entropyfor thermodynamics							
systems.							
CO3 :-Carry out exergy analysis of thermodynamic systems							
CO4 :-Derive various thermodynamic relations such as Maxwell Relations Joule-Thomson,							
ClausiusClapeyron, etc. an	d apply these for evaluation	of thermodynamic propertie	es.	3,4			
CO5:-Apply first and	l second law analysis	of reacting systems	s and	3,4			
Analysethecombustionmed	chanismsofvariousfuels						
CO6: Applythe principles	of thermodynamicsto design	and Analysis of thermal	devices by	4			
engaging in experiential le	arning.	·					
	Course Co	ntents					
Unit I	Properties of pure substanc	e and Equation of state	(08Hr	s)			
Phase change process of p	ure substances, PVT surface,	P-v &P- T diagrams, Use	of steam tab	les and			
charts in common use. E	quations of states for real g	gases Vander waal's equat	ion of state	. other			
equations of state, generali	zed Compressibility chart, L	aw of corresponding states					
Unit II	Laws of therm		(08Hr	s)			
	Thermodynamics, Entropy a						
	e of pure sub, T-ds relation						
thermodynamics.	or pure sub, r-us relation	no, absolute entropy and		u vv 01			
-			(0.017				
Unit III	Ex	tergy	(08Hr	s)			
Concept of reversible wor	k and irreversibility, Second	-Law Efficiency, ExergyTra	ansfer by He	eat and			
Work, The Decrease of E	xergy principle and exergyd	estruction, ExergyBalance,	exergy anal,	ysis of			
power and refrigeration cy	cles.						

Curriculum for Master of Technology (MTech) (wef 2024-25) Matoshri College of Engineering and Research Centre, Eklahare, Nashik (Autonomous)

TT •4 T	X 7		N I	• •		D.1.4		(0011)	
Unit I					- ·	Relations		(08Hrs)	
	-				-			ial Differentials,	
			-	heats; int	ernal er	nergy enth	nalpy and	entropy; Joule -	
Thompson coe	fficient; Cl	apeyron e	quation.						
Unit	V			Con	nbustior	ı		(10Hrs)	
Combustion									
Combustion, Stoichiometry, Standardized Enthalpy Theoretical and Actual Combustion Processes									
Enthalpy of Fo	ormation an	d Enthalp	y of Com	bustion, I	Heating	Values, Fii	st and seco	ond Law Analysis	
of Reacting S	Systems, A	diabatic	Flame Te	emperatur	re,Entrop	by Change	e of React	ing Systems,Gas	
Mixtures – Ma	ss & mole	fractions,	Dalton's	law of pa	rtial pres	ssure, Ama	.gat'slaw,K	ay'srule	
				Books					
Text Books:									
1. Yunus	Cengel,Mic	hael Bole	s, " Ther	modynan	nicsAn I	Engineerin	g Approacl	h", McGraw Hill	
Publica	-					0		,	
Reference Bo	oks:								
1. Michae	el J. Mora	n,Howard	N. Shap	oiro "Fun	damenta	ls of Eng	ineering T	hermodynamics",	
John W	viley; 8 th ed	lition, ISB	N-978-1-	118-4129	93-0				
				-	-			8-0-12-374996-3	
	h Wark,"A		•		•	-			
				ndamenta	uls of H	Engineerin	g Thermoo	dynamics", John	
•	ISBN 978-			~ .					
5. Stepher	n R. Turns,					-	Application	ns",McGrawHill	
		6	The CO	-PO Map	oping M	atrix	1		
CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	
CO1	1	2	2	2	2	2	3	2	
CO2	1	1	2	2	3	3	3	2	
CO3	2	1	2	2	2	2	3	2	
CO4	2	1	1	2	2	3	3	2	
CO5	1	1	1	2	2	3	3	2	
CO6	2	1	1	2	2	3	3	2	

	0 0 0	& Research Co	entre, masi	nik	
Mas	ster of Technology in Heat P				
	First Year MTech Heat				
	24P1405A:Measureme	ents and Contro	ols		
Feaching Scheme	Credit	Exa	amination So	cheme	
		CAT:	20 Marks		
TH: 04 Hours/W	eek 04	CCE:	20 Marks		
		End_Sem:	60 Marks		
		Total:	100 Marks	5	
Prerequisite: -Measure	ement Lab (UG)				
Companion Course, if	any:				
Course Objectives:					
1. Understand the	fundamental concepts of	measurement, inc	luding accur	racy, pre	cision
resolution, and c	calibration.				
2. Identify and ana	alyze different types of senso	rs and transducers	used for me	easuring v	variou
physical quantiti	ies such as temperature, pressu	are, flow, and level	•		
3. Explore the prin	ciples and methodologies of s	ignal conditioning	and amplification	ation to en	nhanc
•	l reliability of measured signal				
	ata acquisition systems and	d instrumentation	techniques	for acq	uiring
	analyzing measurement data.				
-	aracteristics and behavior of o	dynamic systems a	and their resp	ponse to a	contro
inputs.					
Course Outcomes: On	completion of the course, lear	mon will be able to			
	· · · ·	ner will be able to			BL
	principles of measurement	ner win de able to-	_		BL 2
CO1: -Understand the p	· · · ·		_		-
C O1 : -Understand the p C O2 : -Apply measurem	principles of measurement				2
CO1: -Understand the p CO2: -Apply measurem CO3: -Apply the princip	principles of measurement ment and control principle.	quantities			2 3
CO1: -Understand the p CO2: -Apply measurem CO3: -Apply the princip CO4: -Apply the princip	principles of measurement nent and control principle. ples of measurementforField c ples of measurement for derive	quantities	_		2 3 3
CO1: -Understand the p CO2: -Apply measurem CO3: -Apply the princip CO4: -Apply the princip CO5: -Analyze electron	principles of measurement nent and control principle. ples of measurementforField c ples of measurement for derive	juantities ed quantities		lying	2 3 3 3
CO1: -Understand the p CO2: -Apply measurem CO3: -Apply the princip CO4: -Apply the princip CO5: -Analyze electron CO6:-Apply the knowle	principles of measurement nent and control principle. ples of measurementforField of ples of measurement for deriven nic Controller.	quantities ed quantities nton measurements	tools by stud	• •	2 3 3 3
CO1: -Understand the p CO2: -Apply measurem CO3: -Apply the princip CO4: -Apply the princip CO5: -Analyze electron CO6:-Apply the knowle	principles of measurement nent and control principle. ples of measurementforField of ples of measurement for deriven nic Controller. edge ofscience of measurement aracteristics for the improvement	uantities ed quantities nton measurements ents in accuracy ar	tools by stud	• •	2 3 3 3 4
CO1: -Understand the p CO2: -Apply measurem CO3: -Apply the princip CO4: -Apply the princip CO5: -Analyze electron CO6:-Apply the knowle nstruments types its cha	principles of measurement nent and control principle. ples of measurementforField c ples of measurement for deriven nic Controller. edge ofscience of measurement aracteristics for the improvement Course C	uantities ed quantities nton measurements ents in accuracy ar ontents	tools by stud	• •	2 3 3 3 4
CO1: -Understand the p CO2: -Apply measurem CO3: -Apply the princip CO4: -Apply the princip CO5: -Analyze electron CO6:-Apply the knowle	principles of measurement nent and control principle. ples of measurementforField of ples of measurement for deriven nic Controller. edge ofscience of measurement aracteristics for the improvement	uantities ed quantities nton measurements ents in accuracy ar ontents	tools by stud	• •	2 3 3 4 4
CO1: -Understand the p CO2: -Apply measurem CO3: -Apply the princip CO4: -Apply the princip CO5: -Analyze electron CO6:-Apply the knowle instruments types its cha measurement.	principles of measurement nent and control principle. ples of measurementforField c ples of measurement for deriven nic Controller. edge ofscience of measurement aracteristics for the improvement Course C	uantities ed quantities nton measurements ents in accuracy ar ontents rformance charac	tools by stud d precisionin teristics	(8 H)	2 3 3 4 4 4
CO1: -Understand the p CO2: -Apply measurem CO3: -Apply the princip CO4: -Apply the princip CO5: -Analyze electron CO6:-Apply the knowle instruments types its cha measurement. Unit I Active and Passive ins	principles of measurement nent and control principle. ples of measurementforField of ples of measurement for deriven nic Controller. edge ofscience of measurement aracteristics for the improvement Course C Instrument types and per	uantities ed quantities nton measurements ents in accuracy ar ontents rformance charac ection type instru	tools by stud ad precisionin teristics ments, Analo	(8 Hi ogue and	2 3 3 4 4 4 (rs) digita
CO1: -Understand the p CO2: -Apply measurem CO3: -Apply the princip CO4: -Apply the princip CO5: -Analyze electron CO6:-Apply the knowle nstruments types its cha measurement. Unit I Active and Passive ins nstruments, Indicating	principles of measurement nent and control principle. ples of measurementforField of ples of measurement for deriven nic Controller. edge ofscience of measurement aracteristics for the improvement Course C Instrument types and per struments, Null type and defl	uantities ed quantities nton measurements ents in accuracy ar ontents rformance charac ection type instru ts with signal or	tools by stud ad precisionin teristics ments, Analo utput, smart	(8 Hu ogue and and non	2 3 3 4 4 4 ss)
CO1: -Understand the p CO2: -Apply measurem CO3: -Apply the princip CO4: -Apply the princip CO5: -Analyze electron CO6:-Apply the knowle nstruments types its cha neasurement. Unit I Active and Passive ins nstruments, Indicating	principles of measurement nent and control principle. ples of measurementforField of ples of measurement for derivent nic Controller. edge ofscience of measurement aracteristics for the improvement Course C Instrument types and per struments, Null type and defl instruments and instrument Dynamic characteristics of ins	uantities ed quantities nton measurements ents in accuracy ar ontents rformance charac ection type instru ts with signal or	tools by stud ad precisionin teristics ments, Analo utput, smart	(8 Hu ogue and and non	2 3 3 4 4 4
CO1: -Understand the p CO2: -Apply measurem CO3: -Apply the princip CO4: -Apply the princip CO5: -Analyze electron CO6:-Apply the knowle nstruments types its cha neasurement. Unit I Active and Passive ins nstruments, Indicating nstruments. Static and I Unit II	principles of measurement nent and control principle. ples of measurementforField of ples of measurement for derivent nic Controller. edge ofscience of measurement aracteristics for the improvement Course C Instrument types and per struments, Null type and defl instruments and instrument Dynamic characteristics of ins	uantities ed quantities nton measurements ents in accuracy ar ontents rformance charac ection type instru ts with signal ou truments, Necessit t Uncertainty	tools by stud d precisionin teristics ments, Analo utput, smart y of calibratic	(8 Hu ogue and and non on (08 H	2 3 3 4 4 4 rs) digita -smar
CO1: -Understand the p CO2: -Apply measurem CO3: -Apply the princip CO4: -Apply the princip CO5: -Analyze electron CO6:-Apply the knowle nstruments types its char measurement. Unit I Active and Passive ins nstruments, Indicating nstruments. Static and I Unit II Sources of Systematic F	principles of measurement nent and control principle. ples of measurementforField of ples of measurement for deriven nic Controller. edge ofscience of measuremer aracteristics for the improvement Course C Instrument types and per struments, Null type and defl instruments and instrument Dynamic characteristics of ins Measuremen	uantities ed quantities nton measurements ents in accuracy ar ontents rformance charac ection type instru ts with signal ou truments, Necessit t Uncertainty e to Measurement,	tools by stud ad precisionin teristics ments, Analo utput, smart y of calibratic Errors due to	(8 H) ogue and and non on (08 H	2 3 3 4 4 4 rs) digita -sman
CO1: -Understand the p CO2: -Apply measurem CO3: -Apply the princip CO4: -Apply the princip CO5: -Analyze electrom CO6:-Apply the knowle nstruments types its cha measurement. Unit I Active and Passive ins nstruments, Indicating nstruments. Static and I Unit II Sources of Systematic F Inputs, Wear in Instrum	orinciples of measurement nent and control principle. ples of measurementforField of ples of measurement for deriven nic Controller. edge ofscience of measurement aracteristics for the improvement Course C Instrument types and per struments, Null type and deflect instruments and instrument Dynamic characteristics of instruments Measuremen Error, System Disturbance due	uantities ed quantities nton measurements ents in accuracy ar ontents rformance charac ection type instru ts with signal ou truments, Necessit t Uncertainty e to Measurement, on of Accepted Er	tools by stud d precisionin teristics ments, Analo utput, smart y of calibratic Errors due to ror, Improper	(8 Hi ogue and and non on (08 H o Environi r Function	2 3 3 4 4 4 rs) digita -sman frs) menta ning o
CO1: -Understand the p CO2: -Apply measurem CO3: -Apply the princip CO4: -Apply the princip CO5: -Analyze electron CO6:-Apply the knowle instruments types its char measurement. Unit I Active and Passive ins instruments, Indicating instruments. Static and I Unit II Sources of Systematic F Inputs, Wear in Instrum Instruments, Dual Sen	principles of measurement nent and control principle. ples of measurementforField of ples of measurement for deriven nic Controller. edge ofscience of measuremer aracteristics for the improvement Course C Instrument types and per struments, Null type and defl instruments and instrument Dynamic characteristics of instrument Error, System Disturbance due nent Components, Accumulati	uantities ed quantities nton measurements ents in accuracy ar ontents rformance charac ection type instru- ts with signal or truments, Necessit t Uncertainty e to Measurement, on of Accepted Er es of Error, Mini	tools by stud ad precisionin teristics ments, Analo utput, smart y of calibratic Errors due to ror, Improper mizing Expe	(8 H) ogue and and non on (08 H o Environ r Function erimental	2 3 3 4 4 4 (rs) digita sman (rs) menta ning o Error
CO1: -Understand the p CO2: -Apply measurem CO3: -Apply the princip CO4: -Apply the princip CO5: -Analyze electron CO6:-Apply the knowle instruments types its cha measurement. Unit I Active and Passive ins instruments, Indicating instruments, Static and I Unit II Sources of Systematic F Inputs, Wear in Instrum Instruments, Dual Sen Statistical Analysis of	orinciples of measurement nent and control principle. ples of measurementforField of ples of measurement for deriven nic Controller. edge ofscience of measurement aracteristics for the improvement Course C Instrument types and per struments, Null type and deflect instruments and instrument Dynamic characteristics of instrument Error, System Disturbance due nent Components, Accumulati sitivity Errors, Other Source	quantities ed quantities nton measurements ents in accuracy ar ontents rformance charac ection type instru ts with signal or truments, Necessit t Uncertainty e to Measurement, on of Accepted Er es of Error, Mini candom Errors, A	tools by stud ad precisionin teristics ments, Analo utput, smart y of calibratic Errors due to ror, Improper mizing Expe	(8 Hu ogue and and non on (08 H o Environ r Function erimental of Measur	2 3 3 4 4 4 rs) digita -sman rs) menta ning o Error
CO1: -Understand the p CO2: -Apply measurem CO3: -Apply the princip CO4: -Apply the princip CO5: -Analyze electron CO6:-Apply the knowle instruments types its char measurement. Unit I Active and Passive ins instruments, Indicating instruments, Static and I Unit II Sources of Systematic F Inputs, Wear in Instrum Instruments, Dual Sen Statistical Analysis of System Errors, Reducti	principles of measurement nent and control principle. ples of measurementforField of ples of measurement for deriven nic Controller. edge ofscience of measuremer aracteristics for the improvement Course C Instrument types and per struments, Null type and deflect instruments and instrument Dynamic characteristics of instrument Error, System Disturbance due nent Components, Accumulati sitivity Errors, Other Source Measurements subject to R	uantities ed quantities nton measurements ents in accuracy ar ontents rformance charac ection type instru- ts with signal or truments, Necessit t Uncertainty e to Measurement, on of Accepted Er es of Error, Mini- candom Errors, A antification of Sys	tools by stud ad precisionin teristics ments, Analo utput, smart y of calibratic Errors due to ror, Improper mizing Expe ggregation o stematic Erro	(8 Hi ogue and and non on (08 Hi o Environity r Function erimental of Measure ors, Sourc	2 3 3 4 4 rs) digita -sman frs) menta ning of Error rementa ning of Error

Temperature, heat flux measurement, heat transfer coefficient, measurement of force, pressure, flow rate, velocity, humidity, noise, vibration.

Unit IV	Measurement of derived quantities	(08 Hrs)					
Temperature, heat flux measurement, heat transfer coefficient, measurement of force, pressure, flow							
rate, velocity, humidit	y, noise, vibration Force, Acceleration, Torque, power, t	hermo physical					
properties, radiation an	d surface properties, Miscellaneous Measurements - Time,	Frequency, and					
Phase-Angle Measurem	ent, Liquid Level, Chemical Composition, Current and Powe	r Measurement					
Unit V	Basics of Controllers	(08Hrs)					

P, PI, PID controllers, pneumatic and hydraulic controllers, electronic controllers, applications to machine tools, furnaces, material handling etc

Books

Text Books:

1. Mechanical Measurements, S.P. Venkateshan, Ane Books Pvt. Ltd.

Reference Books:

- 1. Measurement Systems-Application and Design, Doebelin E.O., McGraw Hill Publication.
- 2. Measurement and Instrumentation Theory and Application, Alan Morris, Reza Langari, Elsevier.
- **3.** Instrumentation for Engineering Measurements, James Dally, William riley and Kenneth McConnell, Wiley.

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	1	2	2	2	3	2	2	2
CO2	1	1	2	2	3	3	2	2
CO3	2	1	2	2	2	2	2	2
CO4	2	1	1	2	2	3	2	2
CO5	1	1	1	-	2	3	2	2
CO6	2	1	1	2	2	2	2	2

	i College of Engineering ster of Technology in Heat P	& Research Centre, Nasl ower Engineering 2024-25	nik	
	First Year MTech Heat			
	1405-B: Advanced Energ			
Teaching Scheme	Credit	Examination Sch	eme	
TH: 04 Hours/We	ek 04	CAT: 20 Marks		
		CCE: 20 Marks		
		End_Sem: 60 Marks		
Duono guigito.		Total: 100 Marks		
Prerequisite:-				
 To study the variant To learn working To make the study 	ous modeling techniques of en concepts and types of batterie lents to get understand the con	age technologies and its applicat lergy storage systems using TRN es. cepts of Hydrogen and Biogas s wheel and compressed energy s	NSYS. torage.	
-	completion of the course, lear	mer will be able to-		BL
	rgy storage technologies for su			2
-	ergy storage systems using TR			4
	concepts and types of batteries			2
CO4: - Examine the pr	inciple of operation of Hydrog	en and Biogas storage systems		2
CO5: - Explain the wor	rking of super capacitor, Flywl	heel and compressed energy stor	rage	2
	knowledge to advanced Energe mestic and industrial systems	gy Storage technologies and imp	prove	4
	Course C	ontents		
Unit I	Introd	luction	(08 Hrs	5)
Necessity of energy technologies– Applicat	0 11 0	y storage–comparison of	energy sto	orage
Unit II	Thermal Sto	orage System	(09 Hrs	5)
system-pressurized w	vater storage system–Mod	age units–Simple water and re elling of phase change s ling using porous medium ap	storage sys	stem
Unit III	Electrical Er	nergy Storage	(10 Hrs	5)
discharging of a batte – Lead Acid, Nicl	•		charging pes of batto batteries	and eries for
Unit IV	Hydrogen And	Biogas Storage	(08Hrs))
Hydrogen storage	options_compressed gas_lic	uid hydrogen–Metal Hydr	ides chen	nical

Hydrogen storage options-compressed gas-liquid hydrogen-Metal Hydrides, chemical Storage, Biogas storage-comparisons. Safety and management of hydrogen and Biogas storage-Applications

Curriculum for Master of Technology (MTech) (wef 2024-25) Matoshri College of Engineering and Research Centre, Eklahare, Nashik (Autonomous)

Unit V		Alter	mate Ener	rgy Stora	ge Techno	logies		(08Hrs)
Flywheel, Supe storage, Concept	-		1		–Applicati	ons, Co	mpressed	air Energ
			I	Books				
Fext Books:								
1. BrahimD Application	incer and ons,John W			Therma	l Energy	Storage	Systems	and
Reference Book	5:							
 Robert andApplie Ru-shiliu andconve National 	Cabeza, A ons, Elsevi Huggin cations,2 nd Leizhang rsion,,Wile	dvances i er Wood h ns, Er edition,Spr , Xueliang eypublicati echnology Edition)	n Therma lead Publis hergy finger,2015 g sun, Elec ons,2012	l Energy hing, 201 Storage: 5. ctrochemi ry, U.S.	Storage 5 Fund cal techno Departmen	Sy stems lamentals logies for	: Methods , Mat energy st	erials orage
CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	1	2	2	2	3	2	2	2
CO2	1	1	2	2	2	3	2	2
CO3	2	1	2	2	2	2	2	2
CO4	2	1	1	2	2	2	2	2
CO5	1	1	1	2	2	2	2	2
CO6		1	1	2		+ +	2	

	0 0 0	g & Research Centre, Na Power Engineering 2024-25 Power Engineering	ashik	
24P14(nal Combustion Engine	s	
Teaching Scheme	Credit	Examination		
TH: 04 Hours/Week	04	CAT: 20 Mar CCE: 20 Mar End_Sem: 60 Marks Total: 100 Marks	ks	
Prerequisite: Applied The	ermodynamics ,IC Engine	(UG)		
engines. 2. To study the pollut 3. To study the recent 4. To identify the alte	the working principle of s ant formation and its contr technologies adopted in IG rnative fuels for internal co recent trends of IC Engine.	C engine application ombustion engine.	mpression ig	gnition
Course Outcomes: On co				BL
CO1: To understand the w	•			2
	rocess of combustion in S.			2
	affecting on combustion an			
	ce of pollution and control			2 2
CO5: Understand therecer				2
CO6: Apply theoretical kr by engaging in experientian participating in industry	owledge of Internal Com al learning activities such visits, and organizing or skills, foster innovation	bustion Engines to real-world as high-end equipment demo participating in technical ev , and build professional co	onstrations, vents so as	4
	Course (Contents		
Unit I	Intro	duction	(08Hrs	3)
Engine Classifications, En	gine Operating Cycles, En	gine Components,Engine Des haracterization of Flames, Co	ign and Ope	-
Unit II	Spark Igni	tion Engines	(08Hrs	5)
Process Characterization,	Flame Structure And Sp	n Process, Stages of combu eed, Cyclic Variations in C aneous Ignition And Knock		
Unit III	Compression 1	Ignition Engines	(09Hrs	5)
	uel spray behaviour – spra	ine Combustion,Stages of c ay structure, spray penetration		
Unit IV	Pollutant Forma	tion And Control	(08Hrs	-)

Pollutant – Sources – Formation of carbon monoxide, Unburnt hydrocarbon, NO_x, Smoke and Particulate matter – Methods of controlling Emissions – Catalytic converters and Particulate Traps – Methods of measurements and Introduction to emission norms and Driving cycles

Unit V	Recent Trends	(09 Hrs)
Lean Burn Engines – S	Stratified charge Engines – homogeneous charge co	mpression ignition
engines – Plasma Igniti	on - Measurement techniques - laser Doppler, And	emometry. Use of
nano technology in IC En	gines.	

Books

Text Books:

- 1. R.B. Mathur and R.P.Sharma, Internal Combustion Engines, DhanapatRai Publications, 1993
- 2. V. Ganesan, Internal Combustion Engines, II Edition, Tata McGraw-Hill Education, 2002

Reference Books:

- 1. Heywood, J.B., Internal Combustion Engine Fundamentals, McGraw-Hill, 1988.
- 2. K.K. Ramalingam, Internal Combustion Engine fundamentals, Scitech Publications, 2002.
- 3. Kirpal Singh, Automobile Engineering Vol I, Standard Publishers, Delhi 2013.
- **4.** Willard W. Pulkrabek, Engineering Fundamentals of the Internal Combustion Engine, Prentice Hall, 1997

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	1	2	2	3	2	-	2	2
CO2	1	1	2	2	2	3	2	2
CO3	2	1	2	2	2	2	2	2
CO4	2	1	1	2	2	3	2	2
CO5	1	1	1	2	2	3	2	2
CO6	2	1	1	2	2	3	2	2

Matoshri (College of Engineering &	& Research Ce	ntre, Na	shik	
Maste	r of Technology in Heat Po	0 0			
	First Year M.Tech Heat P		-		
	4P1405-D:Hybrid and	1			
Teaching Scheme	Credit		nination S		
TH: 04 Hours/Week	04	CAT:	20 Mark		
		CCE:	20 Mark		
		End_Sem: Total:	60 Mark 100 Mar		
Prerequisite: - Nil		Total.	100 Mai	A.5	
Companion Course, if an	w. Nil				
- /	.y• 1111				
Course Objectives:	propert of hybrid and alastria	duive trains			
	oncept of hybrid and electric		26		
	utilize different types of energy expression of hybrid hybrid states and utilization of hybrid hybrid states and utilization of hybr				
	rent types electric machine a				
-	t trends EV and HEV	in unve trains			
	mpletion of the course, learn	er will be able to-	_		BL
	d for electric vehicles and cl			n	2
	e energy storage system for a	-			
		-			2 2
CO3: -Understand the fundamentals of HEV and its components sizing CO4: -Selection of electric motors and its drive trains					
					3
	ds and technology of EV and				4
	nowledgeHybrid and Electri			•	
	learning activities such as				4
	visits, and organizing or pa skills, foster innovation, a	1 0			4
necessary for successful ca		na buna profess		ipetencies	
	Course Co	ntents			
TI	Introdu			(00 II	~)
Unit I				(08 Hr	
	, 1			ecent EVs	
HEVs, EVAdvantages, Typ	es of Hybrids, Advan /,Hybrid Drive trains, Sizing	0	sadvantage	s Recipro	cating
Unit II	Energy Sources and	1		(10 Hr	a)
				•	
	orage Requirements in Hybr			•	
	Batteries, Battery Paramet orage Systems, Supercapacit				
charging	orage systems, supercapaen	ors and Onra ca	pacitors,14	ywneens, w	1101055
Unit III	HEV Fund	amentals		(08 Hr	s)
	Performance,EV Power train		ing, Series		-
	Electrically Peaking Hybri	1	0	•	
•	Gear Ratio from ICE to Whe	-			2
Unit IV	Electric Machines	and Drive trains		(08 Hr	s)
	page#28/85				

Motor and Engine Ratings, EV and HEV Motor Requirements, DC Machines and its drive, Three-Phase AC Machines and its drive, PM and SR Machines and its drive

Unit V	Recent Electri	c and Hybrid Vehicles and	its future	(08Hr	s)
Introduction, Battery-Powe	ered Cars and	Vans, Hybrid Vehicles, The	Tesla S,	The Honda,	FCX
Clarity, MaglevTrains, Elec	ctric Road–Rail	Systems, Commercialization	and Future	EV and HE	Vs

Books

Text Books:

1. Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003.

Reference Books:

- 1. Chris Mi, M. AbulMasrur ., Hybrid Electric Vehicles Principles and Applications with Practical Perspectives, John Wiley & Sons, Inc., 2018, II Edition.
- 2. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003
- 3. MehrdadEhsani, YimiGao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	1	2	2	3	2	-	2	2
CO2	1	1	2	2	3	3	2	2
CO3	2	1	2	2	2	2	2	2
CO4	2	1	1	2	2	3	2	2
CO5	1	1	1	2	2	3	2	2
CO6	2	1	1	2	2	3	2	2

Matoshri College of Engineering & Research Centre, Nashik								
Master of Technology in Heat Power Engineering 2024-25								
First Year MTech Heat Power Engineering								
24P1405-E: Generic Elective (GE)								
TeachingScheme Credit ExaminationScheme								
TH: 04 Hours/Week	04	CAT: 20 Marks						
		CCE:	20 Marks					
		End_Sem:	60Marks					
Total: 100 Marks								
An elective course chosen generally from an unrelated discipline/subject, with an intention to seek. A								
core course offered in a discipline/subject may be treated as an elective by other discipline/subject and								

vice versa

page#30/85

		0 0 0	& Research Centre, Nashik ower Engineering 2024-25						
	First Year MTech Heat Power Engineering								
Toochin	24P1406: Thermal Engineering Lab-I Teaching Scheme: Credit Examination Scheme:								
Teachin	In Sem: 20 Marks								
PR:									
			Total: 50 Marks						
Compar	nion Course: Advan	ced Thermodynamics and	Combustion, Advanced Fluid Mechanic	S					
Course	Outcomes: On comp	pletion of the course, learn	her will be able to-	BL					
CO1 : -T	o understand basic co	oncepts of research and its	s methodologies	2					
CO2: -T	o learn the methodol	ogy to conduct the Literat	ure Survey	2					
CO3: - 7	To Understand fluid	statics and dynamics		2					
СО4:- Т	o study basics of flo	w visualization and drag a	and lift forces	2					
CO5: - /	ApplyExergyAnalysi	s to various devices and a	nalyze the combustion process	3					
solve pro	oblem by conduct lite		id mechanics and thermodynamics to d fluid statics and dynamics, exergy	4					
	-	-	xperiments/Assignments						
		<u>(Any 5 laboratory a</u>	assignments)						
	CO N	Apping: CO1 to CO5 fo	or all Lab Assignments						
Sr. No.		Experiments/As	signments	CO Mappi ng					
1	outcome in your field several keywords w words, demonstrate Performance metrice major conclusions support these conce quality of the de environmental impa- research question y	eld of interest (i.e. your e which relate to your topic e your understanding of c, data set, comparative a of the paper. Outlining clusions. Describing the sign (positive and neg acts. After reading a pub ou think the author have a	urnal paper which describes a design engineering discipline). You must enter . Read the paper and, using your own f the paper by: Brief Contribution nalysis and outcomes. Writing out the g the verification method(s) used to author's reflective comments on the ative). The positive and negative lished research paper, write down the addressed in undertaking this research. the conclusions reached in addressing	1& 6					

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	2	2	2	2	3	-	1	1
CO2	2	3	2	2	3	3	1	1
CO3	2	2	2	2	2	2	2	2
CO4	1	2	1	1	2	3	2	2
CO5	1	2	1	1	2	3	2	2
CO6	2	3	1	1	2	3	2	2

Matoshri College of Engineering & Research Centre, Nashik							
Master of Technology in Heat Power Engineering 2024-25							
First Year MTech Heat Power Engineering							
	24P1407: Elective Lab-I						
Teaching Scheme:CreditExamination Scheme:							
PR: 02 Hours/Week	01	In_Sem: 20 Marks End_Sem: 30 Marks Total: 50 Marks					
Companion Course: Elective -I							
Syllabus Contents:							
T 1 1							

• The lab practice consists of the tutorials / experiments / Case Study / industrial visit / Industry base Mini project related to thermal systems as decided by the course supervisors of the Program Elective Core Lab (PECL) as follows

1. Measurements and Controls

2. Advanced Energy Storage Technologies

3. Advanced Internal Combustion Engines

4. Hybrid and Electric Vehicles

5. Generic Elective (GE) **

	College of Engineering er of Technology in Heat	Power Engineeri	ng 2024-25					
	First Year MTech Heat 24P1408: Study of In							
Teaching Scheme	Credit	Examination						
TU: 01 Hours/Week	01	In_Sem: End_Sem: Total:	20 Marks 30 Marks 50 Marks					
Prerequisite: Any graduate		I						
Course Objectives:								
 To acquaint with the To understand the rea To learn the Directive To understand the po 	wers, functions and structu	cation of the grow	th of Fundamental Ri nstitutional bodies.	ghts in Indi				
-	tional operations in the con		-					
Course Outcomes: On comp	• · · · · · · · · · · · · · · · · · · ·			BL				
· · · · ·	ge of the historical backgrou dian Constitution to assess	•	-	d 3				
CO2: Analyze and pre	sent findings for study of - rective principles of state po			6				
-	roles, powers, and function i judiciary, with a focus on			2				
• •	position, powers, and functi judiciary, including the role			4				
	islative, administrative, and , including provisions for e			4				
CO6: Elaborate the Inc	dian Constitution's framewing of both the Union and S			e 6				
	Course	Contents						
Unit I	Introduction a	and Citizenship	(04	Hours)				
Definition of constitution, hi onstitution, union and its term	•			e of the				
Unit IIRights in the Constitution and Directive principles of state policy(06 Hours)								
Definition of state, fundamenting ight against exploitation. Risonstitutional remedies. Protolicy, classification of direct	ght to freedom of religion, section in respect of convict	cultural and educ	ational rights, right to					
			Unit IIIStructure, Powers and Functions of Union Legislature(05 Hours)					

The Union executive, the President, the vice President, the council of ministers, the Prime minister, Attorney-General, functions. The parliament, composition, Rajyasabha, Loksabha, qualification and disqualification of membership, functions of parliament. Union judiciary, the supreme court, jurisdiction, appeal by special leave.

Unit IV	Structure, Powers and Functions of State	(05 Цаниа)
	Legislature	(05 Hours)
a Stata avagutive the C	avament the council of ministers the Chief minister educe	ata gananal union

The State executive, the Governor, the council of ministers, the Chief minister, advocate general, union Territories. The State Legislature, composition, qualification and disqualification of membership, functions. The state judiciary, the high court, jurisdiction, writs jurisdiction.

Unit V	Legislative relation between Union and State	(05 Hours)

Relations between the Union and the States, legislative relation, administrative relation, financial Relations, Inter State council, finance commission. Emergency provision, freedom of trade commerce and inter course, comptroller and auditor general of India, public Services, public service commission, administrative Tribunals. Official language, elections, special provisions relating to certain classes, amendment of the Constitution.

Books:

Textbooks:

1 D DBasu, Introduction to the constitution of India, Lexis Nexis, New Delhi, 24e, 2019

2 PM Bhakshi, The constitution of India, Universal Law, 14e, 2017

Reference Books:

1 Ministry of law and justice, The constitution of India, Govt of India, New Delhi, 2019.

2 JN Pandey, The constitutional law of India, Central Law agency, Allahabad, 51e, 2019

3 MV Pylee, India's Constitution, S Chand and company, New Delhi, 16e, 2016

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	1	-	3	2	3	-	-	-
CO2	2	3	3	2	3	3	-	-
CO3	2	3	3	2	2	2	-	-
CO4	1	3	3	1	2	3	-	-
CO5	1	3	3	1	2	3	-	-
CO6	2	3	3	1	2	3	-	-

Curriculum for Master of Technology (MTech) (wef 2024-25) Matoshri College of Engineering and Research Centre, Eklahare, Nashik (Autonomous)

SEMESTER-II

Matoshri College of Engineering & Research Centre, Nashik					
Master of T	echnology in Heat P	ower Engineering 2024-25			
First	First Year MTech Heat Power Engineering				
	24P1409: M	00C-2			
Teaching Scheme	Credit	Examination Scheme			
TH: 02 Hours/Week	02	CAT: 20 Marks			
		CCE: 20 Marks			
		End Sem: 60 Marks			
		Total: 100 Marks			

NPTEL Courses under SWAYAM for AY 2024-25

MOOC-2: NPTEL Courses under SWAYAM for AY 2024-25#				
Course Code	Course Name			
24P1409-A	Notes Course Names will be declared as nor			
24Р1409-В	Note: Course Names will be declared as per availability of NPTEL courses of 12/16 weeks			
24P1409-C	available in that particular year for the			
24P1409-D	semester			

Maste	Jonege of Engineering	g & Research Centre, Na	ashik				
Master of Technology in Heat Power Engineering 2024-25							
First Year MTech Heat Power Engineering							
	24P1410: Advanced						
Teaching SchemeCreditExamination Scheme							
TH: 04 Hours/Week	04	CAT: 20 Marks					
CCE: 20 Marks							
End_Sem: 60 Marks							
		Total: 100 Marks					
Prerequisite: Thermodyna							
Companion Course, if an	y: -Thermal Engineering la	ab-II					
Course Objectives:							
	nodes of heat transfer and the						
•	Ũ	nd lumped heat capacitance.					
3. Understand the mechani							
4. To understand the pheno							
5. Determine the radiative				_			
Course Outcomes: On co	mpletion of the course, lea	rner will be able to-		BL			
CO1. Understand the fun radiation	damental governing equa	ations of conduction, conve	ection and	2			
CO2. Apply the analytical	and numerical solutions for	r heat transfer problem		3			
CO3. Analyze convective heat transfer problems encountered in different thermal systems.							
CO4.Analyze convective heat transfer problems with phase change (boiling							
CO4 .Analyze convectiv			•	4			
CO4 .Analyze convectiv andcondensation).	e heat transfer proble	ems with phase change	•	4			
CO4 .Analyze convectiv andcondensation).	e heat transfer proble		•				
 CO4. Analyze convective and condensation). CO5. Evaluate radiation here CO6. Apply Knowledge experiential learning active 	e heat transfer proble eat transfer between black to of Heat transfer and its ities such as high-end equ problem-solving skills, fo	ems with phase change body and gray bodysurfaces application scenarios by en ipment demonstrations, partister innovation, and build p	b (boiling ngaging in cipating in	4			
CO4. Analyze convective and condensation). CO5. Evaluate radiation here CO6. Apply Knowledge experiential learning active industry so as to imbibe	e heat transfer proble eat transfer between black to of Heat transfer and its ities such as high-end equ problem-solving skills, fo	ems with phase change body and gray bodysurfaces application scenarios by en ipment demonstrations, partister innovation, and build p ineering	b (boiling ngaging in cipating in	4			
CO4. Analyze convective and condensation). CO5. Evaluate radiation here CO6. Apply Knowledge experiential learning active industry so as to imbibe	e heat transfer proble eat transfer between black to of Heat transfer and its ities such as high-end equ problem-solving skills, fo r successful careers in engine Course (ems with phase change body and gray bodysurfaces application scenarios by en ipment demonstrations, partister innovation, and build p ineering	b (boiling ngaging in cipating in	4 4 4			
CO4. Analyze convective and condensation). CO5. Evaluate radiation he CO6. Apply Knowledge experiential learning active industry so as to imbibe competencies necessary for Unit I	e heat transfer proble eat transfer between black to of Heat transfer and its ities such as high-end equ problem-solving skills, fo r successful careers in engin Course C Modes and Laws	ems with phase change body and gray bodysurfaces application scenarios by en ipment demonstrations, parti ster innovation, and build p ineering Contents	(boiling ngaging in cipating in rofessional (08 Hr	4 4 4 s)			
CO4.Analyze convective andcondensation). CO5.Evaluate radiation he CO6. Apply Knowledge experiential learning active industry so as to imbibe competencies necessary for Unit I Steady and Transient H	e heat transfer proble eat transfer between black to of Heat transfer and its ities such as high-end equ problem-solving skills, fo r successful careers in engin Course C Modes and Laws eat Transfer, Multidimen	ems with phase change body and gray bodysurfaces application scenarios by en ipment demonstrations, parti ster innovation, and build p ineering Contents s of Heat Transfer	(boiling ngaging in cipating in rofessional (08 Hr mal Conduc	4 4 4 (s) ctivity,			
CO4.Analyze convective andcondensation). CO5.Evaluate radiation he CO6. Apply Knowledge experiential learning active industry so as to imbibe competencies necessary for Unit I Steady and Transient H Thermal diffusivity, Vario	e heat transfer proble eat transfer between black to of Heat transfer and its ities such as high-end equ problem-solving skills, fo r successful careers in engin Course C Modes and Laws eat Transfer, Multidimen ous Boundary and Initial C	ems with phase change body and gray bodysurfaces application scenarios by en ipment demonstrations, parti ster innovation, and build p ineering Contents s of Heat Transfer sional Heat Transfer, Ther	by (boiling ngaging in cipating in rofessional (08 Hr mal Conduction Eq	4 4 4 s) ctivity, uation,			
CO4. Analyze convective andcondensation). CO5. Evaluate radiation he CO6. Apply Knowledge experiential learning active industry so as to imbibe competencies necessary for Unit I Steady and Transient H Thermal diffusivity, Variation One-Dimensional, and	e heat transfer proble eat transfer between black b of Heat transfer and its ities such as high-end equ problem-solving skills, fo r successful careers in engi Course C Modes and Laws eat Transfer, Multidimen ous Boundary and Initial C Three Dimensional Ste	ems with phase change body and gray bodysurfaces application scenarios by en- ipment demonstrations, parti- ster innovation, and build p ineering Contents s of Heat Transfer sional Heat Transfer, Ther Conditions, General Heat Con-	(boiling (boiling ngaging in cipating in rofessional (08 Hr mal Conduc nduction Eq ermal Resi	4 4 s) ctivity, uation, stance,			
CO4.Analyze convective andcondensation). CO5.Evaluate radiation he CO6. Apply Knowledge experiential learning active industry so as to imbibe competencies necessary for Unit I Steady and Transient H Thermal diffusivity, Varie One-Dimensional, and Generalized Thermal Res	e heat transfer proble eat transfer between black b of Heat transfer and its ities such as high-end equ problem-solving skills, fo r successful careers in engi Course C Modes and Laws eat Transfer, Multidimen ous Boundary and Initial C Three Dimensional Ste	ems with phase change oody and gray bodysurfaces application scenarios by en ipment demonstrations, parti ster innovation, and build p ineering Contents s of Heat Transfer sional Heat Transfer, Ther Conditions, General Heat Con ady-State Conduction, The	(boiling (boiling ngaging in cipating in rofessional (08 Hr mal Conduc nduction Eq ermal Resi	4 4 s) ctivity, uation, stance,			
CO4.Analyze convective andcondensation). CO5.Evaluate radiation he CO6. Apply Knowledge experiential learning active industry so as to imbibe competencies necessary for Unit I Steady and Transient H Thermal diffusivity, Varie One-Dimensional, and Generalized Thermal Res	e heat transfer proble eat transfer between black b of Heat transfer and its ities such as high-end equ problem-solving skills, fo r successful careers in engi Course (Modes and Laws eat Transfer, Multidimen ous Boundary and Initial (Three Dimensional Ste sistance Networks, Therm	ems with phase change oody and gray bodysurfaces application scenarios by en ipment demonstrations, parti ster innovation, and build p ineering Contents s of Heat Transfer sional Heat Transfer, Ther Conditions, General Heat Con ady-State Conduction, The	(boiling ngaging in cipating in rofessional (08 Hr mal Conduc nduction Eq ermal Resi	4 4 4 s) ctivity, uation, stance, al and			
CO4. Analyze convective and condensation). CO5. Evaluate radiation he CO6. Apply Knowledge experiential learning active industry so as to imbibe competencies necessary for Unit I Steady and Transient H Thermal diffusivity, Varie One-Dimensional, and Generalized Thermal Ress Anisotropic Material. Unit II	e heat transfer proble eat transfer between black b of Heat transfer and its ities such as high-end equ problem-solving skills, fo r successful careers in engi Course C Modes and Laws eat Transfer, Multidimen ous Boundary and Initial C Three Dimensional Ste istance Networks, Therm Transient He	ems with phase change body and gray bodysurfaces application scenarios by en- ipment demonstrations, parti- ster innovation, and build p ineering Contents s of Heat Transfer sional Heat Transfer, Ther Conditions, General Heat Co- ady-State Conduction, The al Contact Resistance, Isotr at Conduction	(boiling (boiling ngaging in cipating in rofessional (08 Hr mal Conduc nduction Eq ermal Resi copic Materi (09 Hr	4 4 s) ctivity, uation, stance, al and s)			
CO4.Analyze convective andcondensation). CO5.Evaluate radiation he CO6. Apply Knowledge experiential learning active industry so as to imbibe competencies necessary fo Unit I Steady and Transient H Thermal diffusivity, Varia One-Dimensional, and Generalized Thermal Rese Anisotropic Material. Unit II The Lumped Capacitance	e heat transfer proble eat transfer between black b of Heat transfer and its ities such as high-end equ problem-solving skills, fo r successful careers in engi Course C Modes and Laws eat Transfer, Multidimen ous Boundary and Initial C Three Dimensional Ste sistance Networks, Therm Transient He Method, Validity of the I	ems with phase change body and gray bodysurfaces application scenarios by en- ipment demonstrations, parti- ster innovation, and build p ineering Contents s of Heat Transfer sional Heat Transfer, Ther Conditions, General Heat Con- ady-State Conduction, The al Contact Resistance, Isotr at Conduction Lumped Capacitance Method	(boiling ngaging in cipating in rofessional (08 Hr mal Conduc nduction Eq ermal Resi copic Materi (09 Hr l, General L	4 4 s) ctivity, uation, stance, al and s) umped			
CO4. Analyze convective and condensation). CO5. Evaluate radiation he CO6. Apply Knowledge experiential learning active industry so as to imbibe competencies necessary fo Unit I Steady and Transient H Thermal diffusivity, Varie One-Dimensional, and Generalized Thermal Ress Anisotropic Material. Unit II The Lumped Capacitance Capacitance Analysis, Tr	e heat transfer proble eat transfer between black b of Heat transfer and its ities such as high-end equ problem-solving skills, fo r successful careers in engi Course C Modes and Laws eat Transfer, Multidimen ous Boundary and Initial C Three Dimensional Ste istance Networks, Therm Transient Heat Conduction	ems with phase change body and gray bodysurfaces application scenarios by en- ipment demonstrations, parti- ster innovation, and build p ineering Contents s of Heat Transfer sional Heat Transfer, Ther Conditions, General Heat Co- ady-State Conduction, The al Contact Resistance, Isotr at Conduction Lumped Capacitance Method in Large Plane Walls, Lo	(boiling (boiling ngaging in cipating in rofessional (08 Hr mal Conduc nduction Eq ermal Resi copic Materi (09 Hr l, General L ong Cylinde	4 4 s) ctivity, uation, stance, al and s) umped rs and			
CO4. Analyze convective and condensation). CO5. Evaluate radiation he CO6. Apply Knowledge experiential learning active industry so as to imbibe competencies necessary fo Unit I Steady and Transient H Thermal diffusivity, Vario One-Dimensional, and Generalized Thermal Ress Anisotropic Material. Unit II The Lumped Capacitance Capacitance Analysis, Tr Spheres, Spatial effects. P	e heat transfer proble eat transfer between black b of Heat transfer and its ities such as high-end equ problem-solving skills, fo r successful careers in engi Course C Modes and Laws eat Transfer, Multidimen ous Boundary and Initial C Three Dimensional Ste istance Networks, Therm Transient Heat Method, Validity of the P cansient Heat Conduction roblems related with conver-	ems with phase change body and gray bodysurfaces application scenarios by en- ipment demonstrations, parti- ster innovation, and build p ineering Contents s of Heat Transfer sional Heat Transfer, Ther Conditions, General Heat Con- ady-State Conduction, The al Contact Resistance, Isotr at Conduction Lumped Capacitance Method	 (boiling (boiling ngaging in cipating in rofessional (08 Hr mal Conduction Equermal Resistered copic Materiation (09 Hr General Long Cylinderiation imensional set 	4 4 8 9 ctivity, uation, stance, al and s 9 umped rs and system,			

Physical Mechanism of Convection, External forced convection, Parallel flow over Flat plates, Flow across cylinders and spheres, Flow across tube banks Internal Forced Convection.

Equation of motion and Grashof Number, Natural Convection over flat and inclined surfaces, Natural convection from finned surfaces and PCBs, Natural Convection inside enclosures, Combined Natural Convection and Radiation, Combined Natural and Forced Convection.

Unit IV

TT (4 6 •41	
l Heat	transfer with	phase change

(08Hrs)

Nucleate, film and pool boiling, boiling in forced convection; two phase flow, Filmwise and dropwise condensation; Heat pipes.

Unit	V	Thermal Radiation	(09 Hrs)	
•	•		(**)	

Thermal radiation, Blackbody radiation, Radiation intensity, Radiation properties, Atmospheric and Solar radiation, Shape factor, Radiation heat transfer in two surface enclosures, Radiation shields, Radiation exchange between Emitting and Absorbing gases.

Books

Text Books:

1. YunusCengel, Boles, "HeatTransfer", McGrawHill

2. Holman, J.P., Heat Transfer, Tenth Edition, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2017.

3.Sachdeva, T.R., Fundamentals of Engineering Heat and Mass Transfer, Fifth Edition, New Age International, 2017.

Reference Books:

1.Incropera, F. P. and De Witt, D. P., Fundamentals of Heat and Mass Transfer, 5th Edition, Wiley

2.M.N.Ozisik, "Heattransfer-Abasicapproach" McGrawHill.

3. A Bejan, "ConvectiveHeattransfer",JohnWileyand sons.

4. S.P.Sukhatme, "Heattransfer", ,UniversityPress

emec									
CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	
CO1	2	2	2	2	2	1	3	3	
CO2	3	1	2	2	2	3	3	3	
CO3	3	1	2	2	2	2	3	3	
CO4	2	1	2	2	1	3	3	3	
CO5	2	1	2	2	1	3	3	3	
CO6	3	1	3	2	2	3	3	3	

@The CO-PO Mapping Matrix

Matoshri	College of Enginee	ring & Research Centre, N	Nashik			
Mast		eat Power Engineering 2024-2	5			
		Heat Power Engineering				
		of Heat Exchanger				
Teaching Scheme	Credit	Examination	Scheme			
TH: 04 Hours/We	ek 04	CAT: 20 Marks				
		CCE: 20 Marks End Sem: 60 Marks				
		Total: 100 Marks				
Prerequisite: Student	s are expected to have	e a good understanding of bas	ic Heat a	nd mass		
transfer (UG).	Ĩ					
Companion Course, i	f any: -Thermal Engine	eering lab-II				
given application.2. Enable the students	to analyze and solve h	eat exchanger, their working and leat exchanger problems by app				
mathematics, science a		oot anahan aana fan aaniana annli				
	0 0	eat exchangers for various applie				
4. Prepare students to u design of heat exchang		iques and skills to fulfill industri	ial needs r	elated to		
in research or design.	-	nger with mathematical modelin rse, learner will be able to	ng for app	lications		
		-	CO1. Understandthedifferent types of heat exchangers.2			
	CO2. ApplyLMTDandEffectiveness-NTUmethodsinthedesignofheatexchangers 3					
CO3. Analyse the pressure drop in heatexchanger. 4						
CO3. Analyse the pres			ers	2 3 4		
		nger.	rs	3		
CO4.Identify aspects	ssure drop in heatexchan of selection of material	nger.		3		
CO4.Identify aspects CO5. Applytheprincip CO6. Identify, define	ssure drop in heatexchan of selection of material plesofdesign of heat exc , analyse, formulate, an	nger. s for heat exchangers	porators	3 4 3		
CO4.Identify aspects CO5. Applytheprincip CO6. Identify, define	of selection of material of selection of material plesofdesign of heat exc analyse, formulate, an uring systems by applyin	nger. s for heat exchangers changer for Condensers and Evap id solve problems related to Hear	porators	3 4 3 4		
CO4.Identify aspects CO5. Applytheprincip CO6. Identify, define	ssure drop in heatexchan of selection of material plesofdesign of heat exc analyse, formulate, an uring systems by applyin Cou	nger. s for heat exchangers changer for Condensers and Evap id solve problems related to Heat ng laws of heat transfer	porators	3 4 3 4 4		
CO4.Identify aspects CO5. Applytheprincip CO6. Identify, define Exchanger manufactu Unit I Heat Exchangers – C compactness, and con extended surface heat	of selection of material of selection of material plesofdesign of heat exc analyse, formulate, an uring systems by applyin Cour Types of Classification according struction features. Tub	nger. s for heat exchangers changer for Condensers and Evap id solve problems related to Heat ing laws of heat transfer rse Contents Theat exchanger g to transfer process, number pular heat exchanger, plate type e, Regenerators. Classification	oorators t (08 1 of fluids, e heat exc	3 4 3 4 4 Hrs) surface hangers,		

Arrangement of Flow Paths in Heat Exchangers, Basic Equations in Design, Overall Heat Transfer Coefficient,LMTD Method for Heat Exchanger Analysis, The ε -NTU Method for Heat Exchanger Analysis, Heat Exchanger Design Calculation, Variable Overall Heat Transfer Coefficient, Heat Exchanger Design Methodology, Solution Methods for Determining Exchanger Effectiveness, Fouling of Heat Exchangers.

Unit III		Heat Ex	changer	Pressur	e Drop A	nalysis		(8Hrs)	
Importance of	Pressure I	Drop, Flu	id Pumj	ping De	vices, Ma	ijor Contr	ibutions	to the Heat	
Exchanger Pressure Drop, Assumptions for Pressure Drop Analysis, Extended Surface Heat									
Exchanger Pressure Drop, Regenerator Pressure Drop, Tubular Heat Exchanger Pressure									
Drop,Plate Heat	t Exchanger	Pressure	Drop,Pip	be Losses	5				
Unit IV		Selectio	n of Hea	nt Excha	ngers and	l Their	(09 Hrs)	
			C	omponer	nts				
Temperatures,C Material Comp	Selection Criteria Based on Operating Parameters such as Operating Pressures and Temperatures,Cost,Fouling and Cleanability,Fluid Leakage and Contamination, Fluids and Material Compatibility, Fluid Type ,General Selection Guidelines for Major Exchanger Types,Shell-and-Tube Exchangers, Plate Heat Exchangers,Extended-Surface Exchangers,								
Unit V		C	ondensei	rs and E	vaporator	s	(09 Hrs)	
Design of Shei Operational Co Analysis, Cooli Text Books: 1. Fundam India. Reference Boo 1. Heat ex Anchasa 2. Process 3. Process	 Fundamentals of Heat Exchanger Design -Ramesh K. Shah, Dusan P. Sekulic, Wiley India. Reference Books: Heat exchangers Selection, Rating and Thermal Design – SadikKakac, Hongtan Liu, AnchasaPramunjanaroenkij, CRC Press 								
4. Cooling	Tower, Fur	damental	s- John (C. Hensle	y, SPX C	ooling Tec	hnologies		
		@Th	e CO-P	O Mappi	ing Matri	X			
CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	
CO1	1	2	2	2	3	1	3	3	
CO2	2	1	2	2	3	3	3	3	
CO3	3	2	2	2	2	2	3	3	
CO4	2	1	1	1	2	3	3	3	
CO5	3	2	2	1	2	3	3	3	
CO6	2	1	1	1	2	3	3	3	

Matoshri College of Engineering & Research Centre, Nashik

Master of Technology in Heat Power Engineering 2024-25 First Year MTech Heat Power Engineering 24P1412-ABattery Thermal Management System

Teaching Scheme	Credit	Examination Sc	heme	
TH: 04 Hours/Wee	k 04	CAT: 20 Marks CCE: 20 Marks End Sem: 60 Marks Total: 100 Marks		
Prerequisite: NIL	I			
charging requirements.2. The course will help 13. To analyses the batter	earner to develop battery mana y state of charge and its functi sing the range of simulation.	o batteries, its parameters,mode agement algorithms for batteric	-	
Course Outcomes: On	completion of the course, learn	ner will be able to-		BL
CO.1 Interpret the r	ole of battery management sys	stem		2
CO.2 Identify the re	equirements of Battery Manage	ement System		2
CO.3 Interpret the c	oncept associated with battery	/ charging / discharging proces	S	2
CO.4 Calculate the	various parameters of battery a	and battery pack		3
CO.5 Design the m	odel of battery pack.			4
•	al, legal, security and social iss mentation and management of Course Co	f manufacturing and automatio	n	4
Unit I	Introd		(08 Hrs	~)
Introduction to Battery rate, Energy and powe	Management System, Cells & r, Cells connected in series, Rechargeable cell, Charging	& Batteries, Nominal voltage Cells connected in parallel, and Discharging Process,	and capacit Electrocher	ty, C mical
Unit II	Battery Management	System Requirement	(09 Hrs	s)
Temperature Sensing, Isolation sensing, The	Current Sensing, BMS Fu	pology, BMS Functionality, V Inctionality, High-voltage co Communication Interface, Ra total power.	ontactor con	ntrol
Unit III	Battery State Of Charg Estimation, C		(10 Hrs	s)
		ed methods to estimate SOC, Mithium-ion aging: Negat		
estimation, Battery Lithium-ion aging: Po balancing	ositive electrode, Cell Bala	ancing, Causes of imbalanc	e, Circuits	

Equivalent-circuit models (ECMs), Physics-based models (PBMs), Empirical modelling approach, Physics-based modelling approach, simulating an electric vehicle, Vehicle range calculations, simulating constant power and voltage, Simulating battery packs,

Unit V			Desig	n Of Ba	ttery BMS			(09 Hrs)
Design principles	of batter	y BMS, H	Effect of	distance	, load, an	d force or	n battery l	ife and BMS,
energy balancing with multi-battery system								
Books								
Reference Books:								
1. Plett, Gr ArtechH	egory L Iouse, 20	•	manager	ment sys	stems, Vo	ume I: E	attery mo	odeling.
2. Plett, Gr methods	•••	. Battery House, 20	U	ment sys	tems, Vo	ume II:	Equivalent	-circuit
3. Bergveld	, H.J., K	ruijt, W.S.	, Notten,	P.H.L "I	Battery Ma	nagement	Systems -	-Design
byMode	elling" Pl	nilips Rese	arch Boo	k Series	2002.			
4. Davide	Andrea,"	Battery	Managen	nent Sys	tems for	Large Lit	hium-ion	Battery
Packs"	House, 2	2010						
5. Pop, Val	er, et al.	Battery m	anageme	nt system	ns: Accurat	e state-of-	charge inc	lication
forbatte	ry power	ed applica	tions. Vo	l. 9. Spri	nger Scien	ce & Busi	ness Media	a, 2008
		@T	he CO-P	O Mapp	ing Matri	x		
CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO.1	1	2	2	3	3	2	3	3
CO.2	1	1	2	2	3	1	3	3

CO.3

CO.4

CO.5

CO.6

Matoshri (College of Engineering &	k Research Centre, Nashik					
Maste	er of Technology in Heat Pov	0 0					
First Year MTech Heat Power Engineering							
24P1412-B: Environmental Engineering And Pollution							
	Control						
Teaching Scheme	Credit	Examination Schem	le				
TH: 04 Hours/Week	04	In_Sem1:20 Marks					
		In_Sem2: 20 Marks End Sem: 60 Marks					
		Total: 100 Marks					
Prerequisite: Energy Eng	gineering (UG)						
Companion Course, if an	ny: -						
Course Objectives:							
1. To impart knowled	lge on the atmosphere and its	present condition, global warming	g and eco)-			
legislations.							
	ources of air, water and noise p	ollution and possible solutions fo	r mitigat	ing			
their degradation.	. 1 1						
	e technologies available for geompletion of the course, learne		P	BL			
	bal Warming Potentials and Gr			2			
	cept of Air Pollution and its ef			2			
	cept of water Pollution and its	effect		2			
CO.4.Analyse waste mana	agement technology			4			
	strial Pollution and its effect			2			
		And PollutionControl to reduce		4			
effect of pollution on Envi		- 4 4 -					
	Course Cor						
Unit I		duction	(08 Hr	:s)			
		e depletion - natural cycles - mas	s and				
		nistry and biology – impacts –					
Environmental. Legislatio		11 //	(00.11	``			
Unit II		ollution	(09 Hr	<u>:s)</u>			
	-	gy – atmospheric dispersion – ind					
measurement	and equipments - issues in an	pollution control – air sampling a	ma				
Unit III	Wotor	Pollution	(10 Hr	e d)			
		ality - water treatment systems -					
1	1	- monitoring compliance with	- wastew	ater			
Unit IV	Waste M	lanagement	(09 Hr	rs)			
		0	```				

Sources and Classification – Solid waste – Hazardous waste - Characteristics – Collection and Transportation - Disposal – Processing and Energy Recovery – Waste minimization

Unit V	Other Types Of Pollution From Industries	(09 Hrs)					
Noise pollution and its impact - oil pollution - pesticides - instrumentation for pollution control -							
water pollution from tanneries and other industries and their control – environment impact							

assessment for various projects – case studies. Radiation pollution: types, sources, effects, control of radiation pollution

Books

- 1. Arcadio P Sincero and G.A. Sincero, Environmental Engineering A Design Apporach, Prentice Hall of India Pvt Ltd, New Delhi, 2002.
- **2.** Bishop P., Pollution Prevention: Fundamentals and Practice, McGraw-Hill International Edition, McGraw-Hill book Co, Singapore, 2000.
- **3.** Gilbert M. Masters, Introduction to Environmental Engineering and Science, 2nd Edition, Prentice Hall, 1998.
- **4.** H.Ludwig, W.Evans, Manual of Environmental Technology in Developing Countries, International Book Company, Absecon Highlands N.J. (1991).
- **5.** H.S.Peavy, D.R.Rowe and G.Tchobanoglous, Environmental Engineering McGraw-Hill Book Company, NewYork, (1985).
- **6.** Rao C.S., Environmental Pollution Control Engineering, 2nd Edition, New Age International Publishers, 2006.

@The CO-PO Mapping Matrix											
CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2			
CO1	1	2	2	2	3	1	3	3			
CO2	1	1	2	1	3	3	3	3			
CO3	2	1	2	1	2	2	3	3			
CO4	2	1	1	1	2	3	3	3			
CO5	1	1	1	1	2	3	3	3			
CO6	2	1	1	1	2	3	3	3			

	f Technology in Heat Pov irst Year MTech Heat Po	0 0		
24	P1412-C: Air Condit	ioning Systems		
Teaching Scheme	Credit	Examination	Scheme	
TH: 04 Hours/Week	04	CAT: 20 Marks		
		CCE: 20 Marks		
		End Sem: 60 Marks		
		Total: 100 Marks		
Prerequisite: HVAC (UG)				
Companion Course, if any: -				
Course Objectives:				
- ·	tric concepts underlying Ai	01		
•	-	rinciples of specific Aircon	ditioning sy	ystem.
3. To learn about the critic	•••			
	listribution circuits, water c			
	AC systems in air conditior	•••		
Course Outcomes: On comple	etion of the course, learner	will be able to-		BL
CO1: Analysepsychometrically	y the Air conditioning proc	esses.		4
CO2 : Estimate the heat load for	or summer and winter Air of	conditioning applications		4
CO3 : Understand and apprecia	te the utility of different A	ir conditioning systems for	different	2
applications				<i>L</i>
CO4 :Design a fan-duct system	n for Air conditioning appli	ication		4
CO5: Understand and apprecia	te the individual component	nts of an automobile Air		
conditioning system. various H	IVAC system components	for various applications in t	he	2
building requirements				
CO6 : Apply the advanced kno	wledge and technical skills	s of air Conditioning system	n for the	4
design of air conditioning equi	-			
	Course Con	itents		
Unit I	Psychrometryand Air (Conditioning Processes	(08 H	(rs)
Moist Air properties, use of Ps	ychrometric Chart, Various	s Psychrometric processes,	Air Washer	r,
Adiabatic Saturation. Summer	and winter Air conditionin	g, Enthalpy potential and it	s insights	
Unit II	Load Est	timation	(08H	[rs)
Thermal comfort – Design con	ditions – Solar Radiation-H	Heat Gain through envelope	s –	
Infiltration and ventilation load	ls – Internal loads – Procee	lure for heating and cooling	loadestime	ation.
Unit III	Air Condition	ning Systems	(08 H	[rs)
Thermal distribution systems –	- Single, multi zone system	s, terminal reheat systems,	Dual duct	
Systems, variable air volume s	ystems, water systems and	Unitary type systems.		
bystems, variable an volume s				

Flow through Ducts	s, Static & I	Dynamic I	Losses, Dif	fusers , Du	ct Design-	Equal Fric	tion Metho	od,			
System Balancing		•			e	-					
systems, Air Handl	ing Units and	d Fan Coi	l units – Co	ontrol of ter	nperature,	humidity,	air				
flow and quality.											
Unit V]	HVAC Sys	tem In Au	tomobiles		(09 H	Hrs)			
Automotive System	1 layout and	Compone	nts- Comm	only used I	Refrigerant	s- Safety c	levices –				
Climate control – F	uel efficienc	y aspects									
			Bo	oks							
Reference Books:											
1. Arora C.P., 2010.	Refrigeratio	n and Air	Conditioni	ng, Tata M	cGraw Hil	l Pub. Con	npany,				
2. ASHRAE,	Fundamenta	als and	equipment	, 4 volu	imes-ASH	RAE Inc.	2005.Ca	rier Air			
Conditionin	g Co., Hand	book of A	ir Conditio	ning Syster	ms design,	McGrawH	Hill, 1985.				
3. Dossat Ray	J, Principles	of refrige	eration, S.I.	version, W	illey Easte	ern Ltd, 20	00.				
4. Stockers W. editions 198		J.W., Ret	frigeration	and Air con	ditioning,	McGraw H	Hill Internat	tional			
5. Norman C.	Harris, "Moo	dern Air (Conditionin	g", New Yo	ork, McGr	aw-Hill,19	74				
6. Kuehn T.H.	•		hrelkeld, J.	L., Thermal	Environm	ental Engi	neering,				
7. Manohar Pr	Prentice Ha		d Air Cond	litioning W	Allow Facto	rn Itd 10	83				
	asau, Kenig			Aapping M	•		0.5				
00100						DOI	DG04	DGGA			
CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1				
CO1	1	-						PSO2			
CO2 1 1 2 2 3 2 3 3											
	1	2	2 2	2 2	3	2	3	3			
							3 3 3	3			
CO2	1	1	2	2	3	2	3	33			
CO2 CO3	1 2	1	2	2	3 2	2	3 3 3	3 3 3			

Matoshri (College of Engineering	g & Research Centre, Na	ashik							
Maste	r of Technology in Heat I	Power Engineering 2024-25								
	First Year MTech Heat	Power Engineering								
24P1412-D: Alternate Fuels For IC Engines										
Teaching Scheme	Credit	Examination	Scheme							
TH: 04 Hours/Week	04	CAT: 20 Marks								
		CCE: 20 Marks								
		End Sem: 60 Marks								
		Total: 100 Marks								
Prerequisite:	1	L								
Companion Course, if an	y: -									
Course Objectives:										
1.To expose potential alter	nate fuels and their charac	teristics								
2 To use appropriate synth	etic fuels and fuel additive	s for better combustion chara	cteristics							
3 To utilize alcohol fuels e	ffectively for lower emissi	ons								
4 To elaborate on the utiliz	ation of Bio-Diesel and its	s types as a suitable fuel in Cl	l engines							
5 To utilize different gased	ous fuels and predict their p	performance and combustion								
characteristics										
Course Outcomes: On co	mpletion of the course, lea	rner will be able to-		BL						
CO1:Expose potential	alternate fuels and their cl	naracteristics		2						
CO2:Use appropriate	synthetic fuels and fuel ad-	ditives for better combustion		2						
characteristics				3						
CO3:Utilize alcohol fi	lels effectively for lower e	missions		3						
CO4:Elaborate on the	utilization of Bio-Diesel a	nd its types as a suitable fuel	in CI	2						
engines										
CO5:Utilize different	gaseous fuels and predict t	heir performance and combus	stion	3						
characteristics				5						
CO6:Analyse, interpre	et and provide solutions to	real life fuel related problems	s	4						
	Course (Contents		1						
Unit I	Ir	troduction	(08 H	rs)						
Availability, Suitability, Pr	coperties, Merits and Deme	erits of Potential Alternative I	Fuels – Alco	hols,						
• •	-	ral Gas, Biogas, Fuel standar								
EN		-								
Unit II	Special A	nd Synthetic Fuels	(09 H	rs)						
Different synthetic fuels. N	Aerits, and demerits, Dual.	Bi-fuel and Pilot injected fue	el systems. F	uel						
•		emission characteristics of e	•							
systems, Ethers - as fuel ar	-		J,							
Unit III		cohol Fuels	(10 H	rs)						
Alcohols – Properties. Pr	oduction methods and u	sage in engines. Blending,	dual fuelone	eration						
_		ditives. Performance, combi	-							
Characteristics in engines.										
Unit IV		esel Fuels	(09 H)	rs)						
	DI0-DI									

Vegetable oils and their important properties. Fuel properties characterization. Methods of using vegetable oils – Blending, preheating, Transesterification and emulsification –Performance, combustion and emission characteristics in diesel engines. Third generationbiofuels, Ternary and Quaternary fuels, Issues & limitation of using vegetable oils in ICengines

Unit V	Gaseous Fuels	(09 Hrs)						
Biogas, Natural gas, LPG,	, Hydrogen - Properties, problems, storage and safety as	spects.						
Methods of utilisation in e	Methods of utilisation in engines. Performance, combustion and emission characteristics in							
engines. Issues & limitation	on in Gaseous fuels							

Books

- 1. Keith Owen and Trevor Eoley, Automotive Fuels Handbook, SAE Publications, 1990.
- 2. Pundir B.P, I.C. Engines Combustion and Emission, 2010, Narosa Publishing House.
- 3. Richard L. Bechtold, Automotive Fuels Guide Book, SAE Publications, 1997

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	1	2	2	2	3	2	3	3
CO2	1	1	2	2	3	3	3	3
CO3	2	1	2	2	2	2	3	3
CO4	2	1	1	2	2	3	3	3
CO5	1	1	1	2	2	3	3	3
CO6	2	1	1	2	2	3	3	3

Matoshri College of Engineering & Research Centre, Nashik								
Master of Technology in Heat Power Engineering 2024-25								
First Year MTech Heat Power Engineering								
24P	1412-E: Generic	Elective (GE)						
TeachingScheme	TeachingScheme Credit ExaminationScheme							
TH: 04 Hours/Week	04	CAT: 20 Marks						
		CCE: 20 Marks						
		End Sem: 60 Marks						
		Total: 100 Marks						
An elective course chosen generall	y from an unrelated d	iscipline/subject, with an intention to seek. A						

An elective course chosen generally from an unrelated discipline/subject, with an intention to seek. A core course offered in a discipline/subject may be treated as an elective by other discipline/subject and vice versa

	Mat	oshri Coll	ege of Eng	gineerir	ıg & Re	search	Centre	e, Nashik					
	Master of Technology in Heat Power Engineering 2024-25												
First Year MTech Heat Power Engineering													
24P1413: Thermal Engineering lab-II Teaching Scheme: Credit Examination Scheme:													
I N .	PR: 04 Hours/Week 02 In_Sem: 40 Marks End_Sem: 60 Marks												
Total: 100 Marks													
Comp	anion Cou	rse: Advanc	ced Heat Tra	insfer and	Design of	of Heat I	Exchange	er					
Learn	ing Object	tives:											
		-	le opportuni	-	dent for	perform	ing actua	al experiment	nts or	n heat			
			ed phenomer			11 1 1 1				DI			
		-	oletion of the			II be abl	e to-			BL			
CO1:-	Understan	dFundament	al of heat tra	ansfer pro	blems					2			
CO2: -	Apply the	Natural and	Forced Conv	vection he	at transfe	er				3			
CO3: -	AnalyseBo	oiling and Co	ondensation	heat trans	sfer					4			
CO4: -	Design the	e heat excha	ngeron basis	s of given	thermal	load.				4			
CO5: -	Design the	e Heat transf	fer augmenta	ation Tec	nnique					4			
		•	and apply a		1			d state of th	e art	4			
tools to	o model, ar		olve problen ab Experim										
			apping: CO		-			9					
			apping. CO			Jau A55	ignment	5		СО			
Sr.			Pı	oblem S	tatement				ז	CO Mappi			
No.					utenie				1	ng			
1.	Transient	Heat Condu	ction using	Heisler a	nd Grobe	r charts				1&6			
2.	Combined	l Natural and	d Forced Co	nvection	heat trans	sfer.				2& 6			
3.	Assignme	ent on Boilin	g and Conde	ensation									
4.									3& 6				
	Theat trans	sfer augment	tation Techn	ique.						3& 6 4& 6			
5.		sfer augment plate heat ex		ique.									
	Study of I	plate heat ex		-	er					4& 6			
5.	Study of I	plate heat ex	changer ny one Heat	exchange	er [apping]	Matrix				4& 6 5& 6			
5.	Study of I	plate heat ex	changer ny one Heat	exchange		Matrix PO5	PO6	PSO1		4& 6 5& 6			
5. 6.	Study of p Experime	plate heat ex	changer ny one Heat @The C	exchange	lapping I	1	PO6 2	PSO1 3	PS	4& 6 5& 6 5& 6			
5. 6. C(Study of p Experime O\PO	plate heat ex ntation on a PO1	changer ny one Heat @The C PO2	exchange CO-PO M PO3	lapping I PO4	PO5			PS	4& 6 5& 6 5& 6			
5. 6. C(Study of p Experime O\PO CO.1	plate heat ex ntation on a PO1 2	changer ny one Heat @The C PO2 2	exchange CO-PO M PO3 2	PO4	PO5 2	2	3	PS	4& 6 5& 6 5& 6 5 02 3			
5. 6. C(Study of p Experime O\PO CO.1 CO.2	PO1 2 2 2	changer ny one Heat @The C PO2 2 2 2	exchange CO-PO M PO3 2 2	PO4 3 2	PO5 2 2	2 3	3 3	PS	4& 6 5& 6 5& 6 602 3 3			
5. 6. C(() () ()	Study of p Experime O\PO CO.1 CO.2 CO.3	PO1 2 2 2 2	changer ny one Heat @The C PO2 2 2 2 2 2	exchange CO-PO M PO3 2 2 2 2	PO43222	PO5 2 2 2 2	2 3 2	3 3 3	PS	4& 6 5& 6 5& 6 502 3 3 3			

	Matoshri College of Engineering & Research Centre, Nashik								
	Master of Technology in Heat Power Engineering 2024-25								
	First Year MTech Heat Power Engineering								
		24P1414: E	ective Lab -II						
Teacl	hing Scheme:	Credit	Examination Scheme:						
PR:	04 Hours/Week	02	InSem: 40 Marks						
			End_Sem: 60 Marks						
			Total: 100 Marks						
		Syllabus Co	ontents:						
	• The lab pr	actice consists of the t	utorials / experiments / Case Study /						
	industrial v	isit / Industry base Mini	i project related to thermal systems as						
	decided by	the course supervisors of	the Program Elective Core Lab (PECL)						
	as follows								
	1. Battery T	Thermal Management Sys	tem						
	2. Environn	nental Engineering And F	Pollution Control						
	3. Air Cond	litioning Systems							
	4. Alternate	Fuels For IC Engines							
	5. Generic l	Elective (GE)							

	Matoshri	College of Engineering &	& Research Centre, Nas	shik	
		er of Technology in Heat Po	,		
		Second Year MTech Heat I			
	24	P1415: Project and Fin			
Teachi	ing Scheme	Credit	Examination S	Scheme	
TU:	01 Hours/Week	02	In_Sem: 20 Marks		
PR:	02 Hours/Week		End_Sem: 30 Marks		
			Total: 50 Marks		
Cours	e Objectives:				
1.Ident	tify the strategies in	volved in selection, prioritizat	ion, planning and scheduling	g of a projec	t
2.Anal	yze project risk, pr	ogress & results			
3.Mak	e awareness about v	arious sources of finance			
Cours	e Outcomes: On co	mpletion of the course, learne	r will be able to-		BL
CO1:U	Jnderstand the selec	tion, prioritization and initiation	on of individual projects, WB	S.	-
		d risks associated in project	1 5 /	,	2
	<u> </u>	and results of the project and	illustrate the time value of		
	and use it for decis				3
		requirements for starting a	business and management	of	-
	ng capital		0		3
	0 1	ge of Project finance and Bu	dgets		3
		ge of Capital management in	0	ment	3
		roject management, finance, a			
		e engineering projects.	1 C	2	3
		Course Co	ntents		
	Unit I	Intro	duction	(04Hr	s)
Projec	t Management: D	efinition of project, characte	eristics of projects, types of	f projects,	project
roles.					
-		oritization: Strategic plann	• • • •		
-		ity study (environment, socie	ty), methods of selecting pr	ojects, prio	ritizing
project	ts, securing and neg	otiating projects		I	
	Unit II	Project	t Planning	(04Hr	s)
Projec	t planning and sc	heduling: Project scope and	check list, work breakdown	structure,	project
schedu	le, and uncertainty	n project schedules.			
Projec	ct resourcing and r	isk planning: Abilities neede	ed when resourcing projects,	estimate re	esource
needs,	cost planning and	estimating, risk managemen	nt planning, risk identificat	ion, risk aı	nalysis,
project	t quality planning ar	d project kick-off.			
	Unit III	Project pe	rforming	(04Hr	s)
		an & manultar Drainat arrander	• • • • • • • • • • • • • • • • • • •		
Project	t performing, progra	ess & results: Project supply	chain management, proje	ct balanced	l score
		e project early, finish project	/		l score

Financial Management: Evolution of financial management, key activities of finance manager, key decision areas in financial management, financial statement with balance sheet. Efficient utilization and generation of monetary resources and funds, a comparative study of finance and economics, Costs and revenue evaluation for various engineering operations.

Capital Budgeting: Types of capital budgeting decisions, capital budgeting proposals, estimating cash flows for project appraisal, green capital budgeting

Unit V			Capital M		(05Hrs)					
Working capital 1	nanagement:	Factors	affecting	working	capital	requirement,	operating	cycle		
analysis, negative	e working	capital,	cash	planning	and	managing	cash	flows.		
Cost of capital and	Cost of capital and leverage Analysis: Concept, significance, assumptions, factors affecting cost of									
capital, Leverage Ar	alysis: operat	ing levera	ge, financ	ial leverag	e					

Books

Text Books:

1. Timothy J Kloppenborg, Project Management, Cengage Learning, 2nd Edition, 2009.

2. John J Hampton, Financial Management, PHI Publication, 4th edition

Reference Books:

1.Pennington Lawrence, Project Management, McGraw-Hill, 1st edition.

2. Joseph A Moder, Philips New Yark, Project Management with CPM & PRT, McGraw-Hill, 2nd edition, 1983

3. M.Y. Khan, Financial Management, Tata Mc-Graw Hill, Fifth Edition, 2007.

	@The CO-PO Mapping Matrix								
CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	
CO1	1	2	-	3	2	-	-	-	
CO2	1	2	-	2	2	3	-	-	
CO3	1	2	-	2	2	2	-	-	
CO4	1	1	-	2	2	3	-	-	
CO5	1	1	-	2	2	3	-	-	
CO6	1	1	-	2	2	3	-	-	

Master of Te	echnology in Heat Pov	Research Centre, Nashik ver Engineering 2024-25	
First	Year MTech Heat Po 24P1416: Human		
Teaching Scheme	Credit	Examination Scheme	A
TU: 02 Hours/Week	02	CAT/CCE: 20 Marks	
10: 02 Hours/ week	02	End Sem: 30 Marks	
		Total: 50 Marks	
Course Objectives:			
• To help students underst	and how human rights	are protected under Indian crimit	nal lawsand
the Constitution.	-	-	
• To teach the role of polic	e, courts, jails, and lega	l aid in protecting human rights.	
• To discuss problems like	custodial violence and	l suggest ways to improve justice	and protect
vulnerable groups.			
Course Outcomes: On completi	on of the course, learne	r will be able to–	BL
CO1: Understand the Constitution	onal Framework for Hur	nan Rights	2
CO2: Evaluate legal and constitu	tional protections again	st torture and inhumane	4
treatment			
CO3: Apply Human Rights Norr	ns to Criminal Justice P	Practices	3
CO4: Analyze the Need for Refo	rmation of Jail Manual	s and Prison Rules	3
CO5: Understand the Right to Fr	ee Legal Aid for Disab	ed Persons and Judicial	2
Responses			
CO6: Understand Theories of Pu	nishment		2
	Course Conte	ents	
	Module #1	l	
Constitutional mechanism for e	enforcement of Human	Rights, Role of Supreme Cour	t under the
constitution of India, Role of H	igh Court, Role of Sub	ordinate judiciary, Public Interes	t Litigation,
Origin and development of Lega	l Aid, Related provision	n of Legal Aid under the Indian La	aws, Human
Rights under the Preventive Dete	ention Laws		
	Module #2		
Safeguard against other General	l and Special Criminal	Laws, Right against Arbitrary A	arrest, Right
		egal Aid and assistant for the accu	
• • •		nal standard norms of Human R	ights during
Emergency, Judicial responses to	-		
	Module #:		
-		Human Rights for Male prisoners	
-		ach to protection of prisoner's rig	
		istration of justice and the role of	
Justice delivery system under the		on of accused person under the In	dian Laws
	Module #4		
_	-	nvestigation in criminal justicing	-
-	-	en, Law enforcement agencies an	
crime against women and childre	en, Theories of Punishr	nents, Importance of Jail, Reform	ation of Jail

manuals and rules, Importance of Juvenile homes in India.

Module #5

Reformation of Juvenile Homes, Protection of Women Rights under the criminal Laws of India, Protection of Women Rights under the International Law, , Protection of Child Rights under the criminal Laws of India, Protection of child rights under the International law, Meaning and definition of disabled person and their legal status, Disability and Human Rights: National and International Perspectives, Right to free Legal Aid of the disable people and judicial response to their problem

Learning Resources

Text Books:

1. HANDBOOK OF HUMAN RIGHTS AND CRIMINAL JUSTICE IN INDIA P: Third Edition

2. "Human Rights And Criminal Justice" by Pandit Kamalakar

Reference Books:

1.Criminal Justice: A Human Rights Perspective of the Criminal Justice Process in India by Dr. K.I. Vibhute

e-Books:

1.https://nhrc.nic.in/sites/default/files/I-%20BOOK.pdf

2. https://nhrc.nic.in/sites/default/files/HREdu.pdf

MOOC Courses:

https://onlinecourses.swayam2.ac.in/cec20_hs24/preview

	@ The CO-PO Mapping Matrix								
CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	
C01	-	1	1	-	-	-	-	-	
CO2	-	1	1	-	-	-	-	-	
CO3	-	1	1	-	-	-	-	-	
CO4	-	1	1	-	-	-	-	-	
CO5	-	1	1	-	-	-	-	-	
CO6	-	1	1	-	-	-	-	-	

SEMESTER-III

Matoshri Colle	ge of Engineering & R	esearch Centre, Nashik				
Master of T	Sechnology in Heat Power	Engineering 2024-25				
Firs	t Year MTech Heat Power	Engineering				
24	P1417: MOOC-3Cybe	r Security				
	G 1''	Examination Head:TH				
Teaching Scheme	Credit	Examination Scheme & Mar	ks			
		ISE:				
TH:04 Hours/Week	04	CAT:20 Marks				
		CCE:20 Marks				
D		ESE:60 Marks				
Prerequisite:						
Companion Course, if any:						
Course Objectives:	.1 . 1 . 11 11		1			
• To prepare students with computer systems and no		nd skills needed to protect and defen	nd			
		nonitor cyber security mechanisms	to			
-	on of information technology					
		remediate computer security breac	hes			
Course Outcomes: On complete	tion of the course, learner w	ill be able to-	BL			
CO1: Analyze and evaluate the cyber security needs of an organization. 4						
CO2: Determine and analyze	software vulnerabilities and	d security solutions to reduce the	3			
risk of exploitation.						
CO3: Analyze logs to correlate			4			
	raphic methods ensure s	ecure communication and data	3			
protection.	1 artidan an in a famanai an llar		1			
CO5:Identify and collect digita		l investigation of digital evidence.	1 3			
COO: Apply ethical and legal p	Course Conten		3			
	Course Conten		(0.0			
Unit I	Overview	of Cyber Security	(08 Hrs.)			
Overview of Cyber Security I	nternet Governance Cha	llenges and Constraints, Cyber Th	,			
		onage, Need for a Comprehensive				
•		International convention on Cyber	•			
	•	e state and Private Sector in Cyber	-			
Cyber Security Standards. The I	NDIAN Cyberspace, Nation	nal Cyber Security Policy 2013.				
Case Study	Discuss Cyber security in F	Financial Sector				
Unit II	Vulnerabilities	and Access Control	(08 Hrs.)			
		software, System administration,				
-		tional Data, Weak Authentication,				
Unprotected Broadband commu						
-		on, Biometrics, Cryptography, Dece	eption,			
Scanning, Security policy, Thre		ion Detection Systems, Response,				
		E-Commerce - Securing Customer I	Data at			
Case Study	Shop Now					
Unit III	Intrusion detection	and Prevention	(08 Hrs.)			

Intrusion, Physical Theft, Abuse of Privileges, Unauthorized Access by Outsider, Malware infection, Intrusion detection and Prevention Techniques, Anti-Malware software, Network based Intrusion detection Systems, Network based Intrusion Prevention Systems, Host based Intrusion prevention Systems, Security Information Management, Network Session Analysis, System Integrity Validation.

Casa Study	Intrusion	Detection	and	Prevention	in	Financial	Secto	or -
Case Study	Safeguard	ing Bank Da	ita at S	Secure Bank.				
			2					(08
Unit IV	if IV Crynfography	Hrs.)						
		· 1 0		1 4				1

Introduction to Cryptography, Symmetric key Cryptography, Asymmetric key Cryptography, Message Authentication, Digital Signatures, Applications of Cryptography. Overview of Firewalls-Types of Firewalls, User Management, VPN Security Protocols: - security at the Application Layer-PGP and S/MIME, Security at Transport Layer- SSL and TLS, Security at Network Layer-IPsec.

Discuss Cryptography in Secure Cloud Storage - Protecting Dat Cloud Secure	a at

Unit V	Cyber Forensic	(08 Hrs.)
		· ·

Introduction to Cyber Forensics, Handling Preliminary Investigations, Controlling an Investigation, Conducting disk-based analysis, Investigating Information-hiding, Scrutinizing E-mail, Validating E-mail header information, Tracing Internet access, Tracing memory in real-time.

Case Study	Discuss Cyber Forensics in Intellectual Property Theft

Learning Resources

Text Books:

1. The Hacker Playbook: Practical Guide to Penetration Testing – @Peter Kim.

2. Applied Network Security Monitoring: Collection, Detection, and Analysis – @Chris Sanders,

@Jason Smith.

Reference Books:

1. Network Security Through Data Analysis: Building Situational Awareness – Michael Collins.

e-Books: <web links>

1. https://heimdalsecurity.com/pdf/cyber_security_for_beginners_ebook.pdf

2.http://larose.staff.ub.ac.id/files/2011/12/Cyber-Criminology-Exploring-Internet-Crimes-and-Criminal-Behavior.pdf

3. http://docshare04.docshare.tips/files/21900/219006870.pdf

MOOC Courses: <web links>

1. https://swayam.gov.in/nd2_cec20_cs15/preview

Matoshri	College of Engineerin	g & Research Centre, Na	shik		
Maste		Power Engineering 2024-25			
	Second Year MTech Hea				
	24P1418:Computation	•			
Teaching Scheme	Credit	Examination S	cheme		
TH: 04 Hours/Week	04	CAT: 20 Marks			
		CCE: 20 Marks			
		End Sem: 60 Marks			
-		Total: 100 Marks			
Prerequisite: Fluid mech					
Companion Course, if a	ny: Thermal Engineering I	Lab-III (24P1419)			
Course Objectives:					
1.To Understand the conc	ept of fluid dynamics, CFI	D techniques, convergence crite	eria		
2.To familiarize the stude	nts about the implementati	on of CFD in fluid mechanics a	and heat		
transfer problems					
3.To understand the use o	f software based on CFD				
Course Outcomes: On co	ompletion of the course, lea	arner will be able to-		BL	
CO1 : -Understand the stepwise procedure to completely solve a fluid dynamics problem					
Using computational meth	nods.			2	
CO2: Identify applications of finite volume and finite element methods to solve Navier-					
Stokes equations				3	
CO3: -Analyze various m	ethods of grid generation t	techniques and application of fi	inite	4	
	me methods to various ther	1			
• •		nin CFD context, performing so	olid	3,4	
• • •	producing grids via meshin	-		5,1	
	-	ring flow problems. Analyze the	ne CFD	3,4	
	ilable data, and discuss the				
		machinery with the aids of mo	odern	3	
CFDwhile ensuring best t	• •	~			
	Course	Contents			
Unit I	Introduc	tion to CFD	(08 H	rs)	
Introduction: History and	Philosophy of computation	onal fluid dynamics, Computa	tional appro	oach to	
Fluid Dynamics and its	comparison with experim	nental and analytical methods	, Basics of	E PDE:	
Elliptic, Parabolic and Hy	perbolic Equations, Applic	cations of CFD in engineering			
Unit II	Governii	ng equations	(08 H	rs)	
Review of Navier-Stokes	Equation and simplified for	orms, Solution Methodology: F	DM and FV	'M	
	FVM, Stability, Converger				
Unit III		d Essentials of Numerical Methods	(10 H)	rs)	

Finite Difference Method: Introduction, finite difference approximations, Taylor series expansion, polynomial fitting, approximation of boundary conditions, applications to conduction and advection-diffusion problems

Finite Volume Method: Basic methodology, finite volume discretization, approximation of surface and volume integrals, interpolation methods – central, upwind and hybrid formulations and comparison for convection-diffusion problem

Unit IVGeometry Modeling and Grid Generation(10 Hrs)

Practical aspects of computational modelling of flow domains, Grid Generation, Types of mesh and selection criteria, Mesh quality, Key parameters and their importance.Structured Grid Generation: Algebraic Methods,PDE Mapping Methods, Surface Grid GenerationUnstructured Grid Generation:Delaunay-VoronoiMethods,Advancing Front Methods,Combined DVM and AFM

Unit V	Turbulence Modeling	(8 Hrs)

Reynolds averaged Navier-Stokes equations, Turbulence Models: Zero-Equation Models, One-Equation Models, Two-Equation Models. Second Order Closure Models (Reynolds Stress Models), Algebraic Reynolds Stress ModelLarge Eddy Simulation, Direct Numerical Simulation, Turbulence Models for Reynolds Averaged Navier-Stokes(RANS),

Books

Text Books:

- 1. Anderson, J.D., "Computational Fluid Dynamics", McGraw Hill Publications , 2017
- 2. Anil W. Date, "Introduction to Computational Fluid Dynamics", Cambridge Univ. Press,

- 1. Chung, T.J. "Computational Fluid Dynamics", Cambridge University Press; 2nd edition, 2014
- 2. S.V. Patankar, "Numerical Heat Transfer and Fluid Flow", Hemisphere Publishing Corporation

	@ The CO-PO Mapping Matrix							
CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	1	2	1	3	2	2	3	3
CO2	1	1	1	2	2	3	3	3
CO3	2	1	2	2	2	2	3	3
CO4	3	1	1	2	2	3	3	3
CO5	3	1	2	2	2	3	3	3
CO6	3	1	2	2	2	3	3	3

Matoshri (College of Engineering	& Research Centre, Na	ashik	
		ower Engineering 2024-25		
	Second Year MTech Heat	t Power Engineering		
24P1419-A:0		ste Heat Recovery Syste		
Teaching Scheme	Credit	Examination	Scheme	
TH: 04 Hours/Week	04	CAT: 20 Marks		
		CCE: 20 Marks		
		End Sem: 60 Marks		
D '''		Total: 100 Marks		
Prerequisite:				
Course Objectives:	1			
•	ic energy generation cycles	s types and probable areas of	annlightigns	
	1 0 ,	ry systems and carry out its ϵ	11	voie
	mpletion of the course, lear		-	BL
	-			
	ciples of cogeneration syste			2
_	ciples of cogeneration tech			2
CO.3. Understand the of Is	ssues And Applications Of	Cogeneration Technologies		2
CO.4. Understand The Wa	ste Heat Recovery Systems	5.		2
CO.5.Understand the Ecor	nomic Analysis.			2
CO.6.Apply Knowledge of Application.	of Cogeneration And Wast	e Heat Recovery Systems for	or practical	3
	Course C	ontents		
Unit I	Introd	luction	(08 Hrs)	
		- topping - bottoming - con		
с с.		generation systems – waste h	eat	
recovery – sources and typ	es – concept of tri and quad	d generation		
Unit II	Cogeneration	Technologies	(09 Hrs)	
Configuration and thermoo	lynamic performance – stea	am turbine cogeneration syste	ems – gas	
• •		nes cogeneration systems – co		
	ns – advanced cogeneration	systems: fuel cell, Stirling e	ngines	
etc.				
Unit III		ions Of Cogeneration ologies	(10 Hrs)	
0 1		 utility and cogeneration pl 		
11	•	or – industrial sector –build	ding sector –	rural
sector – impacts of cogene	ration plants – fuel, electric	city and environment		
Unit IV	Waste Heat Re	covery Systems	(09 Hrs)	
	• •	s – recuperators – Regenerate		
		te heat boilers –classificatio neatexchangers – heat pipe		
Unit V	Economi	c Analysis	(09 Hrs)	
		· • • • • • • • • • • • • • • • • • • •	(07 1113)	

Investment cost – economic concepts – measures of economic performance – procedure for economic analysis – examples – procedure for optimized system selection and design – load curves – sensitivity analysis – regulatory and financial frame work for cogeneration and waste heat recovery systems

Books

Reference Books:

1. Charles H. Butler, Cogeneration, McGraw Hill Book Co., 1984.

- 2. De Nevers, Noel, Air Pollution Control Engineering, McGraw Hill, New York, 1995.
- 3. EDUCOGEN The European Educational tool for cogeneration, Second Edition, 2001.
- 4. Energy Cogeneration Hand book, George Polimveros, Industrial Press Inc, New yark1982.
- 5. Horlock JH., Cogeneration Heat and Power, Thermodynamics and Economics, Oxford, 1987.
- 6. Institute of Fuel, London, Waste Heat Recovery, Chapman & Hall Publishers, London, 1963.

7. Seagate Subrata, Lee SS EDS, Waste Heat Utilization and Management, Hemisphere, Washington, 1983

@The CO-PO Mapping Matrix

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2		
CO.1	1	2	2	3	3	2	3	3		
CO.2	1	1	2	2	3	2	3	3		
CO.3	2	1	2	2	2	2	3	3		
CO.4	2	1	1	2	2	2	3	3		
CO.5	1	1	1	2	2	2	3	3		
CO.6	2	1	1	2	2	2	3	3		

Matoshri	College o	f Engineering &	Research Centre, Nas	hik	
	U	0 0	ver Engineering 2024-25		
	First Ye	ar MTech Heat Po	wer Engineering		
	24P1419-]	B Gas turbinean	d Jet Propulsion		
Teaching Scheme		Credit	Examination S	cheme	
TH: 04 Hours/Week	<u> </u>	04	CAT: 20 Marks		
			CCE: 20 Marks		
			End Sem: 60 Marks		
			Total: 100 Marks		
Prerequisite: Students a Engine.	are expecte	d to have a good	understanding of basic inte	rnal Comb	oustion
Companion Course, if a	ny: -				
Course Objectives:					
This course will enable s	students to u	understand fundame	ntal knowledge of construct	tion and w	orking
of various types of gas tu	rbines and .	let Propulsion andth	eir components.		
Course Outcomes: On c	ompletion of	of the course, learne	r will be able to-		BL
CO.1 Analyze thermodyr and significance of its var	•		nd understand construction,	working	4
CO.2 Analyze thermodyr	namic cycle	s of Centrifugal Con	npressor		4
CO.3 Explain Axial Flow	Compress	or			2
CO.4 Describe in detail a	bout Comb	ustion in turbine.			2
CO.5 Analyze the jet pro	pulsion				4
			ciences on Gas turbine and J	let	3
Propulsion to solve engin	eering prob	_			
		Course Con	tents		
Unit I		Gas Turbin	e Plant	(08 H	rs)
turboprop engine. The Performance characterist	compresso ics of the st	or, combustor, tur ationary and turbor	analysis of practical gas tur bine and exhaust nozzle prop and turbojet engine. Th c and flight performance at t	characte e turbojet	ristics. engine
Unit II		Centrifugal Co	ompressors	(09 H	rs)
Principal of operation, w and Mach number at inta			aneless space, slip factor, po	ower input	factor
Unit III		Axial Flow Co	ompressor	(10 H	rs)
	-		dure for single and multista Description and problems of		
Unit IV		Combustion in (Gas Turbine	(09 H	rs)
	-	-	ombustion systems. Fuel i erature distribution, Reacti	•	-

Curriculum for Master of Technology (MTech) (wef 2024-25) Matoshri College of Engineering and Research Centre, Eklahare, Nashik (Autonomous)

Unit V			Jet	: Propulsi	on			(09 Hrs)		
Ideal and Non-id	leal cycle	analysis,	Diffusers	, Nozzle	s, Combus	stors an	d Afterbu	rners, Ducts		
and Mixers, Syste	nd Mixers, System matching and analysis, Rocket Propellants, rocket equation, rocket staging,									
electric propulsion	l .									
			B	ooks						
Text Books:										
1. V. Ganesar	n "Gas Turb	ine" Tata	McGraw	-Hill Educ	cation, 2 nd e	di. ,200	3			
Reference Books:										
 Elements of Fundament University Cohan, Ro Dr.Meherw 	tals of Jet gers "Gas T	t Propuls urbine" Pe e, P.E "Ga	ion with erson, 5th is Turbine	h Applic	cations, R 2001 ring" Hand	onald	D. Flack,			
CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2		
CO.1	1	2	2	2	3	2	3	3		
CO.2	1	1	2	2	3	3	3	3		
CO.3	1	1	2	2	2	2	3	3		
CO.4	1	1	1	2	2	3	3	3		
CO.5	1	1	1	2	2	3	3	3		
CO.6	2	1	1	2	2	3	3	3		

Mag	0 0	ng & Research Centre, Nas	nik	
1v1as		t Power Engineering 2024-25		
	First Year MTech Hea	0 0		
	24P1419-C: Cryog	0 0		
Teaching Scheme	Credit	Examination Sector	cheme	
TH: 04 Hours/Weel	k 04	CAT: 20 Marks		
		CCE: 20 Marks		
		End Sem: 60 Marks		
		Total: 100 Marks		
—	-	good understanding of Thermo	dynamics,	Fluic
	n and Air Conditioning, He	eat Transfer, Mathematics		
Course Objectives:	. 1 1 1	1	1	1 ·
	•	solve cryogenics related proble	ems by ap	plying
	hematics, science and engin	•	in du stais 1	maad
		s, techniques and skills to fulfill	industrial	needs
	mperature systems.	cation skill to demonstrate cryog	onice theor	
		enics systems in research or desig		les.
_		to lifelong learning in the		ion/ai
		reness of social and environment		
with engineering	-	eless of social and environment	155005 0550	clater
	completion of the course, le	earner will be able to-		BL
CO1: Apply knowled	-	, and engineering for the needs in	l	3
Cryogenic.			1	
CO2: Explain the con Helium gas.	icept of various liquefaction	n cycles and systems for air, hydr	ogen and	2
CO3: Understand the	concept of Gas separation a	and purification for air and hydro	gen	2
CO4: Describe the ide	ea of Cryocoolers Cryogeni	ic refrigeration systems		2
-	1 . 0	brage system and importance of es to measure Flow, Level and ten	perature	
				2
	tae at Cryagenics Engineer	ring for advanced air conditioning	-	
COO. Apply Knowled		ring for advanced air conditioning	-	2 3
COO. Apply Knowled		Contents	-	
Unit I	Course		-	3
Unit I	Course Cryogenic flui	e Contents	g system.	3 rs)
Unit I Introduction, properties	Course Cryogenic fluid of cryogenic fluids, prop	Contents ds and applications	(08 Hu ogenics at	3 rs) lower
Unit I Introduction, properties temperature, supercondu Unit II	Course Cryogenic fluid of cryogenic fluids, prop active materials, application Gas Li	e Contents ids and applications perties of materials used in cryons as of cryogenics Cryogenic fluids iquefaction	(08 Hi ogenics at and applic (09 Hi	3 lower ations rs)
Unit I Introduction, properties temperature, supercondu Unit II Gas liquefaction &	Course Cryogenic fluid of cryogenic fluids, prop active materials, application Gas Li refrigeration systems, B	Contents ds and applications perties of materials used in cryons of cryogenics Cryogenic fluids iquefaction Basics of refrigeration & liq	(08 Hr ogenics at and applic (09 Hr uefaction,	3 rs) lower ations rs) idea
Unit I Introduction, properties temperature, supercondu Unit II Gas liquefaction & thermodynamic cycle,	Course Cryogenic fluids, prop active materials, application Gas Li refrigeration systems, B Joule Thomson effect, ac	e Contents ids and applications perties of materials used in cryons as of cryogenics Cryogenic fluids iquefaction Basics of refrigeration & lique diabatic expansion, various lique	(08 Hr ogenics at and applic (09 Hr uefaction,	3 rs) lower ations rs) idea
Unit I Introduction, properties temperature, supercondu Unit II Gas liquefaction & thermodynamic cycle,	Course Cryogenic fluid of cryogenic fluids, prop active materials, application Gas Li refrigeration systems, B	e Contents ids and applications perties of materials used in cryons as of cryogenics Cryogenic fluids iquefaction Basics of refrigeration & lique diabatic expansion, various lique	(08 Hr ogenics at and applic (09 Hr uefaction,	3 rs) lowe: ations rs) idea
Unit I Introduction, properties temperature, supercondu Unit II Gas liquefaction & thermodynamic cycle,	Course Cryogenic fluid of cryogenic fluids, prop active materials, application Gas Li refrigeration systems, B Joule Thomson effect, ac r air, Neon, Hydrogen & He	e Contents ids and applications perties of materials used in cryons as of cryogenics Cryogenic fluids iquefaction Basics of refrigeration & lique diabatic expansion, various lique	(08 Hr ogenics at and applic (09 Hr uefaction,	3 lower ations rs) idea
Unit I Introduction, properties temperature, supercondu Unit II Gas liquefaction & thermodynamic cycle, Liquefaction systems for Unit III	Course Cryogenic fluids, prop active materials, application Gas Li refrigeration systems, B Joule Thomson effect, ac r air, Neon, Hydrogen & He Gas Separatio	e Contents ds and applications perties of materials used in cryoness of cryogenics Cryogenic fluids iquefaction Basics of refrigeration & lique diabatic expansion, various lique elium gas	(08 Hi ogenics at and applic (09 Hi uefaction, uefaction c (10 Hi	3 lower ations rs) idea

Cryocoolers Cryogenic refrigeration systems, Ideal and practical systems, Joule-Thompson cryocoolers, Stirling Cycle Refrigerators

Unit V	Cryogenic fluid storage and transfer	
Unit V	systems	(09 Hrs)

Cryogenic fluid storage and transfer systems Cryogenic Dewar, Cryogenic Transfer Lines, Two phase flow in cryogenic transfer system. Instrumentation and safety Instrumentation: in cryogenics to measure Flow, Level and Temperature

Books

- 1. Thomas M. Flynn, "Cryogenic Engineering", Marcel Dekker. Inc New York illustrated edition 1997.
- 2. Marshall Sittig, D. Van Nostrand Co. "Cryogenics Research and Applications", Princeton N.J, Van Nostrand. 1963Scott,
- 3. R. B, Cryogenic Engineering, Scott, R. B. D'Van-Nostrand, 1962.
- 4. Vance, R. W., Applied Cryogenic Engineering, John Wiley and sons, 1st edition1962.
- 5. M. Sitting, "Cryogenic", D' Van-Nostrand company, 1st edition 1963.

	@ The CO-PO Mapping Matrix								
CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	
CO1	2	2	2	3	2	1	3	3	
CO2	2	2	2	2	2	3	3	3	
CO3	2	2	2	2	2	2	3	3	
CO4	2	1	1	2	2	3	3	3	
CO5	1	1	1	2	2	3	3	3	
CO6	2	2	2	2	2	3	3	3	

Matoshri Co	ollege of Engineering &	& Research Centre, Na	ashik	
Master	of Technology in Heat Pov	wer Engineering 2024-25		
	econd Year MTech Heat H			
24P14	19-D: Advanced Powe	er Plant Engineering		
Feaching Scheme	Credit	Examination	Scheme	
TH: 04 Hours/Week	04	CAT: 20 Marks		
		CCE: 20 Marks		
		End Sem: 60 Marks		
		Total: 100 Marks		
Prerequisite:				
Course Objectives:				
1. Understand the thermody	namics associated with pow	ver plants		
2. Detail on the role of vario	ous utilities in coal based the	ermal power plants		
3. Acquire know-how on the	e working of gas turbine and	l diesel power plants		
4. Appreciate the concept of	f Poly generation for total er	nergy recovery from a syste	em	
5. Brief on the working of h	ydro electric and nuclear po	ower plants		
Course Outcomes: On com	pletion of the course, learne	er will be able to-		BL
CO.1Analyse appropriate po	ower generation technologie	es for mitigating the energy	gap	4
CO.2. Appraise the steam ra thermal power plants	te, heat rate and cost for gen	nerating electricity from co	al based	3
CO.3 Analyze and suggest r	neasures for improving the	performance of gas turbine	and diesel	
power plants				4
CO.4. Assess the applicabili	ity and performance of a cos	generation system		3
CO.5. Decide a suitable type			vith the	
prevailing conditions		-		2
CO.6. Apply Knowledge of	different Power Plants for e	economic power generation	with	2
different load				3
	Course Cor	ntents	,	
Unit I	Introdu	ction	(08 Hr	rs)
Energy scenario: India Vs. V Power Plants (Coal, Gas Tu		•		l
Unit II	Coal Based Therm	al Power Plants	(09 Hr	rs)
Basics of typical power plan Water Treatment and Piping			-	ers,
addition-Rankine cycle imp				
AFBC/PFBC – computation	-			
	Gas Turbine And Di	esel Power Plants	(10 Hr	rs)
Unit III				
	Closed – Improvements – Int	tercooler, Reheating and Re	egeneration.	
Unit III Brayton cycle – Open and C Diesel power plant – Layo	-	•	-	tarting
Brayton cycle – Open and C	out – Performance analysis	and improvement – Tech	niques forst	tarting

Cogeneration systems-types-heat to power ratio-Thermodynamic performance of steam turbine gas turbine and IC engine-based cogeneration systems-Poly Generation-Binary Cycle-Combined cycle. MHD –Open cycle and closed cycle-Hybrid MHD & steam power plants

	Unit V	Hydro Electric and Nuclear Power Plants	(09 Hrs)	
	Hydroelectric Power plant	s - classifications - essential elements - pumped stora	ige systems –	
micro and mini hydel power plants. General aspects of Nuclear Engineering – Components of				
	nuclear power plants – Nu	clear reactors & types – PWR, BWR, CANDU, Gas C	looled, Liquid	
	Metal Cooled and Breeder	reactor-nuclear safety–Environmental Issues-Comput	ation of per	

Unit cost of power generation

Books

Reference Books:

1.Nag, P.K., Power Plant Engineering, Tata McGraw Hill Publishing Co Ltd, New Delhi,1998.

2. E.I.Wakil, Power Plant Engineering, McGraw Hill Publications New Delhi

3. Wood, A.J., Wollen berg, B.F., Power Generation, operation and control, John Wiley, NewYork, 1984.

4. Gill, A.B., Power Plant Performance, Butter worths, 1984.

5. Lamarsh, J.R., Introduction to Nuclear Engg. 2nd edition, Addison-Wesley, 1983

6.R.Yadav, Steam and Gas Turbines, Central Publishing House, Allahabad.

@The CO-PO	@The CO-PO Mapping Matrix								
CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	
CO.1	2	2	2	3	2	3	2	1	
CO.2	2	1	2	2	2	3	2	2	
CO.3	2	1	2	2	2	2	2	1	
CO.4	2	2	1	2	2	3	2	2	
CO.5	1	1	1	2	2	3	2	2	
CO.6	2	1	1	2	2	3	2	2	

Matoshri College	e of Engineering &	k Research Centre, Nashik						
Master of Te	chnology in Heat Pov	wer Engineering 2024-25						
First	First Year MTech Heat Power Engineering							
24P	1419-E: Generic	Elective (GE)						
TeachingScheme	Credit	ExaminationScheme						
TH: 04 Hours/Week	04	CAT: 20 Marks						
		CCE: 20 Marks						
		End Sem: 60 Marks						
		Total: 100 Marks						
An elective course chosen generall	y from an unrelated d	iscipline/subject, with an intention to seek. A						

An elective course chosen generally from an unrelated discipline/subject, with an intention to seek. A core course offered in a discipline/subject may be treated as an elective by other discipline/subject and vice versa

	Matoshi	ri Co	ollege of I	Enginee	ring &	Research	Centre	, Nashik			
	Ma					er Engineeri	Ū	-25			
	Second Year MTech Heat Power Engineering 24P1420: Thermal Engineering Lab -III										
Taaah	ing Sahama			vedit	mai Enş			1 n Scheme:			
	ing Scheme: 02 Hours/Weel	k		01	InS	em: 20 Ma		ii Scheme:			
	02 110013/ Weel	IX .		01		l_Sem: 30					
						al: 50 Mar					
Compa	anion Course:	-Con	putationa	l Fluid D	ynamics						
Learn	ing Objectives:	: Und	erstanding	advanced	l concept	s in fluid me	echanics	such as Na	vier-Stokes		
-	ons, boundary l	-	-		-	-			-		
_	mental techniqu			mechan	ics resea	rch, includir	ng flow	visualizatio	on, pressure		
	rement, velocity e Outcomes: O			the cours	e. learner	will be able	to-		BL		
	Understand the								2		
	Calculate the b					,			3		
CO.3	Calculate the d	•	•	perties D	ensity				3		
CO.4	Understand the	prop	erties and c	haracteris	stics of ir	compressib	le fluid:		2		
CO.5	Calculate hydro	ostatio	c force and	use of lav	w of cons	ervation ma	ss to flui	d flow	3		
CO.6A	pply Knowledg	e of (CFD for dif	ferent app	plication				3		
Su	ggested List of	Labo	oratory Ex	periment	s/Assign	ments <u>(Any</u>	5 labora	tory assig	nments)		
		CO]	Mapping:	CO1 to C	CO5 for a	ll Lab Assig	gnments				
Sr. No.]	Problem	Stateme	nt			CO Mapping		
1.	Experimentation	on on	External fl	ow over a	a 2D/3D				1 & 6		
2.	Estimation Flo	w ov				nt Re. Pressu	ure variat	tion over	2 & 6		
3.	the body and d Thermal Analy		f solar flat i	olate colle	ector				3& 6		
4.	Thermal Analy								4& 6		
5.	Flow past an a				ments ca	lculation of	lift		5& 6		
6.	Flow through a							ty	5& 6		
		1				ng Matrix		-			
C	OVBO P	01	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2		
	CO.1	2	2	2	3	3	2	3	3		
	CO.2	2	1	2	2	3	3	3	3		
	CO.3	2	1	2	2	2	2	3	3		
	CO.4	2	1	2	2	2	3	3	3		
	CO.5	2	1	1	2	2	3	3	3		
	CO.6	2	1	1	2	2	3	3	3		

	College of Engineering			
Maste	er of Technology in Heat P Second Year MTech Heat		5	
24P14	21: Company Law and		ice	
Feaching Scheme	Credit	Examinatio	n Scheme	
		In_Sem: 20 Mar	ks	
TU: 01 Hours/We	eek 01	End_Sem: 30 Mai	·ks	
		Total: 50 Ma	rks	
Prerequisite:				
Course Objectives:				
	understand the formation, m	nanagement and other activ	ity of the com	panies
•	icts of global governance co	•	-	-
00	ny both national and interna	1 0 1 1		
1	ompletion of the course, lear			BL
	in the key characteristics, hi		various types	
	valuate the merits and deme	-		2
L ·	e of promoters, outline th	1 • 1		
	components and implicatio	0 1 1	1	2
Association, including do				
<u>~</u>	lities and issues related to th	ne issuance of prospectuses	s, analyze the	
	of shares and debentures,		-	4
apital and borrowing pov		1		
1 01	icance, objectives, and dim	nensions of corporate gov	ernance, and	
	governance failures and			4
governance.	0	U	0 1	
·	el workings of corporate	governance, including th	ne roles and	
	ors and shareholders, and a	•		4
-	t directors in the Indian con		8	
1	yze key aspects of corpor		e, and legal	
	r impact on company perform		-,	4
	Course C			
Unit I		Nature and Scope	(04 Hı	•e)
		-	(04 11	. 5)
-	and characteristics of compa	iny.		
Historical background	1 of company			
• Kinds of companies				
• Merits and Demerits	of Incorporation of company	y - Lifting the corporate ve	il	
Unit II	Procedure for Incorp	ooration of companies	(04 Hı	:s)
• Role of promoters, Le	egal Position of Promoter Pr	e-incorporation contracts		
-	ssociation - Meaning, Pu	-	es and Docti	rine of
Ultravires	<i>U</i> , <i>u</i>	• · · · · · · · · · · · · · · · · · · ·		
Articles of Association	on - Meaning Purpose, Conte	ent. Alternation, Construct	ve Notice.	
 Doctrine of Indoment 	• •			
		and Dohantures	(4 11	a)
Unit III	r rospectus, snare	es and Debentures	(4 Hr	5)

- Meaning Formalities of issue Prospectus Misrepresentation of Prospectus -
- Golden Rule
- Shares Meaning, Types of Shares and Transfer of shares
- Share Capital, Meaning, Kinds, Alternation, Reduction and Voting Rights
- Debenture Meaning, Types, Charge-Fixed and Floating, Crytalisation of Floating charge
- Borrowing Powers Effective of unauthorized borrwoings

Unit IV	Introduction to Corporate Governance	(04 Hrs)	
T. 1		D'		

- Introduction, Meaning and definition of CG, Significance objectives of CG, Dimensions of CG benefits of CG, issues in CG
- Reasons for corporate Governance Failure, Certain new
- initiatives in Governance, consequences of bad Governance, requirements to strengthen Corporate Governance

Unit V	Model working of corporate governance	(04 Hrs)

- Model working of corporate governance: Board Structure, role and responsibilities of directors, Rights
- Responsibilities of shareholders, ownership of independent
- Directors Indian Scenario, corporate governance summary, corporate governance rating

Reference Books:

1 A.K. Mujumdar, Dr. G.K. Kapoor, Company Law and Practice; Taxmann, 59/32, New

Rohtak Road, New Delhi-110 005.

2.C.A.KamalGarg, Bharat's Corporate and Allied Laws, 2013

3.Institute of Company Secretaries of India, Companies Act 2013, CCH WolterKluver Business, 2013

4. Lexis Nexis, Corporate Laws 2013 (Palmtop Edition)

5.Avtar Singh : Company Law

6.C. Fernando, Business Ethics and Corporate Governance Pearson.

7.V.Balachandran V.Chandrasekaran, Corporate Governance Ethics and Social Responsibility, PHI Publication

@The CO-PO Mapping Matrix

	••••							
CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO.1	-	1	-	-	-	1	-	-
CO.2	-	1	-	-	-	1	-	-
CO.3	-	-	-	-	-	1	-	-
CO.4	-	-	-	-	-	1	-	-
CO.5	-	-	-	-	-	1	-	-
CO.6	-	1	-	-	-	1	-	-

Matoshri College of Engineering & Research Centre, Nashik							
	Master of Technology in Heat Power Engineering 2024-25						
	Se	cond Year MTech He	at Power Engineering				
		24P1422:Dis	sertation Stage-I				
Teaching Scheme:CreditExamination Scheme:							
PR: 12 Hours/Week 06 CCE 1: 40 Marks							
			CCE 2: 40 Marks				
			End_Sem: 120 Marks				
			Total: 200 Marks				
	quisite:Nil						
Cours	e Objectives:						
1.	To learn the literature	e survey					
2.	To familiarize the stu	dents about understand	ing the open literature, preparation of				
	literature review						
3.	To understand the pro-	oblem formulation base	d on the literature review				
Cours	e Outcomes: On com	pletion of the course, lea	arner will be able to -	BL			
CO1 : - Identify a topic in advanced areas of Thermal Engineering.							
CO2 : -Review literature to identify gaps and define objectives and scope of the work.				2			
CO3 : - Select the specific problem or ideas from literature and develop research methodology. 3							
CO4 : - Develop a model, experimental set-up necessary to meet the objectives 4							
CO5 :-Develop a computational techniques to meet the objectives 4							
CO6 :	-Apply the fundament	al knowledge of therma	l Engineering to real life problem	4			
D				1			

Description

Students are expected to choose real-world contemporary problem and apply the engineering principles learned, to solve the problem through building prototypes or simulations or writing codes or establishingprocesses/synthesis/correlations.

The dissertation shall be submitted as per the schedule given in the academic calendar. The dissertation supervisor will periodically review the progress of the student and finally give his/her assessment of the work done by the student.

M. Tech Dissertation Rubric Analysis:

	Č Č
Task	Description
Ι	Selection of Topic
II	Literature Survey
III	Defining the Objectives and Solution Methodology
IV	Performance of the Task

	@The CO-PO Mapping Matrix							
CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	3	3	3	3	3	3	3	3
CO2	3	3	3	2	3	3	3	3
CO3	3	3	3	2	2	2	3	3
CO4	3	3	3	2	2	3	3	3
CO5	3	3	3	2	2	3	3	3
CO6	3	3	3	2	2	3	3	3

Curriculum for Master of Technology (MTech) (wef 2024-25) Matoshri College of Engineering and Research Centre, Eklahare, Nashik (Autonomous)

SEMESTER-IV

Matoshri College of Engineering & Research Centre, Nashik

Master of Technology in Heat Power Engineering 2024-25 Second Year MTech Heat Power Engineering

24P1423: Internship

271 1723. mainship						
Teach	ing Scheme	Credit	Examination Scheme			
TH:	04 Hours/Week	04	CAT: 40 Marks			
			CCE: 40 Marks			
			End_Sem:	120 Marks		
			Total:	200 Marks		

Prerequisite:Knowledge of Thermal Engineering, manufacturing processes, modeling, and mechanical systems.

Course Objectives:

Internship provides an excellent opportunity to learner to see how the conceptual aspects learned in classes are integrated into the practical world. Industry/on project experience provides much more professional experience as value addition to classroom teaching.

- To encourage and provide opportunities for students to get professional/personal experience through internships.
- To learn and understand real life/industrial situations.
- To get familiar with various tools and technologies used in industries and their applications.
- To nurture professional and societal ethics.

To create awareness of social, economic and administrative considerations in the working environment of industry organizations.

Course Outcomes: On completion of the course, learner will be able to–	BL
CO1: Demonstrate professional competence through industry internship.	2
CO2: Apply knowledge gained through internships to complete academic activities in a professional manner.	3
CO3: Choose appropriate technology and tools to solve given problem	4
CO4: Demonstrate abilities of a responsible professional and use ethical practices in day to day life.	4
CO5: Create network and social circle, and developing relationships with industry people.	4
CO6: Analyze various career opportunities and decide carrier goals.	4

Guidelines

Every student has to undergo Internship. Internship is structured, short-term, supervised training often focused around particular tasks or projects with defined time scales. Core objective is to expose technical students to the industrial environment. Engineering internships are intended to provide students with an opportunity to apply conceptual knowledge from academics to the realities of the field work/training

The internship maybe undergone in an Industry/Research organization/Govt. Organizations/NGO/ Innovation/Entrepreneurship. Student may choose either to work on innovation or entrepreneurial activities resulting in start-up or undergo internship with industry/NGO's/Government organizations/Micro/Small/ Medium enterprises make to themselves ready for the industry

Internship work Identification:

Student may choose to undergo Internship at Industry/Govt. Organizations/NGO/MSME/Rural Internship/ Innovation/IPR/Entrepreneurship. Student may choose either to work on innovation entrepreneurial activities resulting in start-up or undergo internship with or industry/NGO's/Government organizations/Micro/Small/ Medium enterprises make to themselves ready for the industry.

Student can take internship work in the form of the following but not limited to:

- Working for consultancy/ research project,
- Contribution in Incubation/ Innovation/ Entrepreneurship Cell/ Institutional Innovation Council/ startups cells of institute /
- Learning at Departmental Lab/Tinkering Lab/ Institutional workshop,
- Development of new product/ Business Plan/ registration of start-up,
- Industry / Government Organization Internship,
- In-house product development, intercollegiate, inter department research internship under research lab/group, micro/small/medium enterprise/online internship,
- Research internship under professors, IISC, IIT's, Research organizations,
- Participate in open source development.

Internship Diary/ Internship Workbook:

Students must maintain Internship Diary/ Internship Workbook. The main purpose of maintaining diary/workbook is to cultivate the habit of documenting. The students should record in the daily training diary the day-to-day account of the observations, impressions, information gathered and suggestions given, if any. The training diary/workbook should be signed every day by the supervisor.

Assessment and Evaluation is to be done in consultation with internship supervisor (Internal and External – a supervisor from place of internship.

Evaluation through Seminar Presentation/Viva-Voce at the Institute-

The student will give a seminar based on his training report, before an expert committee constituted by the concerned department as per norms of the institute. The evaluation will be based on the following criteria:

- Depth of knowledge and skills
- Communication & Presentation Skills
- Team Work
- Creativity

- Planning & Organizational skills
- Adaptability
- Analytical Skills
- Attitude & Behavior at work
- Societal Understanding
- Ethics
- Regularity and punctuality
- Attendance record
- Diary/Work book
- Student's Feedback from External Internship Supervisor

After completion of Internship, the student should prepare a comprehensive report to indicate what he has observed and learnt in the training period.

Internship Diary/workbook may be evaluated on the basis of the following criteria:

- Proper and timely documented entries
- Adequacy & quality of information recorded
- Data recorded
- Thought process and recording techniques used
- Organization of the information

The report shall be presented covering following recommended fields but limited to,

- Title/Cover Page
- Internship completion certificate
- Internship Place Details- Company background-organization and activities/Scope and object of the study / Supervisor details
- Index/Table of Contents
- Introduction
- Title/Problem statement/objectives
- Motivation/Scope and rationale of the study
- Methodological details
- Results / Analysis /inferences and conclusion
- Suggestions / Recommendations for improvement to industry, if any
- Attendance Record
- Acknowledgement
- List of reference (Library books, magazines and other sources)

Feedback from internship supervisor(External and Internal)

Post internship, faculty coordinator should collect feedback about student with recommended parameters include as- Technical knowledge, Discipline, Punctuality, Commitment, Willingness to do the work, Communication skill, individual work, Team work, Leadership.....

	@The CO-PO Mapping Matrix							
CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	3	3	3	2	3	2	3	3
CO2	3	3	3	2	3	3	3	3
CO3	3	3	3	2	3	2	3	3
CO4	3	3	3	2	3	3	3	3
CO5	3	3	3	2	3	3	3	3
CO6	3	3	3	2	3	3	3	3

Matoshri College of Engineering & Research Centre, Nashik						
Master of T	echnology in Heat Po	ower Engineering 2024-25				
First	t Year MTech Heat P	ower Engineering				
	24P1424: MOOC-4					
Teaching Scheme	Teaching SchemeCreditExamination Scheme					
TH: 02 Hours/Week	TH: 02 Hours/Week 02 CAT: 20 Marks					
	CCE: 20 Marks					
End Sem: 60 Marks						
		Total: 100 Marks				

NPTEL Courses under SWAYAM for AY 2025-26

MOOC-1: NPTEL Courses under SWAYAM for AY 2025-26#					
Course Code	Course Name				
24P1423-A	Note: Course Names will be declared as per				
24Р1423-В	availability of NPTEL courses of 12/16 weeks available in that particular year for the				
24P1423-C	semester				
24P1423-D					

Matoshri College of Engineering & Research Centre, Nashik								
Master of Technology in Heat Power Engineering 2024-25								
First Year MTech Heat Power Engineering								
24P1425								
Skill Development in Thermal Systems/MOOC								
Teaching Scheme	Credit	Examination Scheme						
PR: 02 Hours/Week	02	CCE: 10 Marks						
TUT: 01 Hours/Week		CCE: 10 Marks						
	End Sem: 30 Marks							
Total: 50 Marks								
Prerequisite: -								

Course Objectives:

The objective of this course is to equip postgraduate students with advanced knowledge and practical skills in the field of thermal engineering. It aims to deepen their understanding of core concepts such as thermodynamics, heat transfer, and fluid mechanics, and their application in real-world engineering scenarios. The course emphasizes the development of hands-on expertise through laboratory experiments, simulation-based learning using modern tools like ANSYS Fluent and MATLAB, and project work that reflects industry practices

Course Outcomes: On completion of the course, learner will be able to–				
CO1: Apply advanced concepts of thermodynamics, heat transfer, and fluid mechanics to analyze and solve complex thermal engineering problems.				
CO2: Use modern simulation tools and software (such as ANSYS Fluent and MATLAB) to model, design, and evaluate thermal systems effectively.	3, 5			
CO3: Conduct laboratory experiments, analyze data, and interpret results to assess the performance and efficiency of thermal systems.	4, 5			
CO4: Perform energy audits and recommend optimization techniques for improving the performance of thermal equipment and processes.				
CO5: Demonstrate effective teamwork, communication skills, and ethical practices in engineering problem-solving and project execution				
CO6: Develop and present technical reports or project documentation with clarity and professionalism, reflecting critical thinking and application of thermal engineering knowledge				
Syllabus				
Assignment/Case Study (any five)				

1. Heat Exchanger Simulation Using Suitable Software

- > Write a code to simulate a counterflow heat exchanger.
- Perform parametric analysis:
- Varying flow rates
- Inlet temperatures
- Different fluids
- > Plot: Effectiveness vs. NTU, Temperature profiles

2. Building Heat Gain Simulation Using Software

- ▶ Model a simple building (2–3 rooms).
- > Input building geometry, envelope data, weather file, occupancy schedules.
- Simulate and extract:
- ➢ Hourly cooling load profile
- Peak load time and value

3. Energy Audit of thermal Power Plant/Simulation

- Identify key loss areas in the plant:
 - o Boiler flue gas losses
 - Turbine exhaust losses
 - Condenser losses
 - Auxiliary power consumption (fans, pumps, mills)
- Estimate these losses using formulas and data (or simulate them)

4. Waste Heat recovery

- Provide a brief overview of waste heat recovery and its importance in industrial applications, particularly in energy-intensive industries like cement, steel, and power plant
- > Select any one industrial process that generates significant waste heat
 - Cement manufacturing (e.g., kiln exhaust)
 - Steel production (e.g., blast furnace exhaust)
 - Power plants (e.g., flue gas from coal or gas turbines)
 - Refineries (e.g., waste heat from distillation columns)
 - Glass manufacturing (e.g., molten glass cooling)

5.Solar thermal System

- Identify an Application for the Solar Thermal System: Choose one of the following types of systems for your case study:
- > Residential Solar Water Heating System for a family home or apartment complex.
- Solar Process Heat for Industrial Application (e.g., food processing, chemical manufacturing, textile industries).

4. Students should provide context for three cases study, including the industry or application area (e.g., power generation, HVAC systems, renewable energy, etc.).

- > Solar Power Plant for electricity generation in an industrial area or a small community.
- > Solar District Heating for a neighborhood or community

6. Industrial Refrigeration Systems

Choose an Industrial Application: Select one of the following industrial systems for case study:

- Food Storage Warehouse: Design a refrigeration system to maintain temperatures for a large warehouse that stores frozen or perishable goods.
- Cold Storage for Pharmaceuticals: Design a refrigeration system for a facility that needs precise temperature control for storing pharmaceutical products.
- Chemical Processing Plant: Design a refrigeration system that provides cooling for a chemical reactor or other process equipment.
- Ice Production Facility: Design a refrigeration system to produce and store ice for industrial use.

@ The CO-PO Mapping Matrix								
CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	3	3	3	2	3	2	3	3
CO2	3	3	3	2	3	3	3	3
CO3	3	3	3	2	3	2	3	3
CO4	3	3	3	2	3	3	3	3
CO5	3	3	3	2	3	3	3	3
CO6	3	3	3	2	3	3	3	3

Matoshri College of Engineering & Research Centre, Nashik Master of Technology in Heat Power Engineering 2024-25 Second Year MTech Heat Power Engineering 24P1426: Dissertation Stage-II

Teacl	hing Scheme:	Credit		Examination Scheme:				
PR:	16 Hours/Week	08	CCE 1: 50 Marks					
			CCE 2: 50 Marks					
			End_Sem	: 150 Marks				
			Total:	250 Marks				
Prere	equisite: Nil		·					
Cour	se Objectives:							
1.	To develop the setup/	model based on the l	iterature survey					
2.	To familiarize the stu software	idents about the carr	ying out experi	mentation/ computer program	ming/			
3.	To understand the rep	oort writing, analysis	of result, prepar	ration of manuscript etc.				
Course Outcomes: On completion of the course, learner will be able to-								
CO1 :	- Identify the materials	and methods for car	rying out experi	iments	2			
CO2 :	- Execute the research	methodology with a	concern for soc	iety, environment and ethics	3			
CO3 :	CO3 : - Analyze, discuss and justify the results/trends and draw valid conclusions 4							
CO4 :	CO4 : - Prepare the report as per recommended format and present the work orally adhering to stipulated time							
CO5:	O5: -Explore the possibility to publish/present a paper in peer reviewed journals/conference proceedings without plagiarism.							
CO6:- Apply the knowledge to develop thermal Engineering Solution through experimentation and Modern tools and techniques.								

Description

Students are expected to choose real-world contemporary problem and apply the engineering principles learned, to solve the problem through building prototypes or simulations or writing codes or establishingprocesses/synthesis/correlations.

The dissertation shall be submitted as per the schedule given in the academic calendar. The dissertation supervisor will periodically review the progress of the student and finally give his/her assessment of the work done by the student.

M. Tech Dissertation Rubric Analysis:

Task	Description
I	Selection of Topic
II	Literature Survey
III	Defining the Objectives and Solution Methodology
IV	Performance of the Task
V	Dissertation Preparation
VI	Review (Presentation & Understanding)
VII	Viva-Voce
VIII	Publications

Instructions for Dissertation Writing

It is important that the procedures listed below be carefully followed by all the students of M. Tech (Mechanical Heat Power Engineering).

1. Prepare Three Hard Bound Copies of your manuscript.

2. Limit your Dissertation report to 70 - 150 pages (preferably)

3. The footer must include the following:

Institute Name, M.Tech Mechanical (Heat Power Engineering) Times New Roman 10 pt. andcentrally aligned.

4. Page number as second line of footer, Times New Roman 10 Pt, centrally aligned.

5. Print the manuscript using

a. Letter quality computer printing.

b. The main part of manuscript should be Times New Roman 12 pt. with alignment-justified.

c. Use 1.5 line spacing.

d. Entire report shall be of 5-7 chapters.

6. Use the paper size 8.5" \times 11" or A4 (210 \times 197 mm.

7. All paragraphs will be 1.5 lines spaced with a one blank line between each paragraph. Each paragraph will begin with without any indentation.

8. Section titles should be bold with 14 pt typed in all capital letters and should be left aligned 9. Sub Section headings should be aligning at the left with 12 pt, hold and Title Cose (the fire

9. Sub-Section headings should be aligning at the left with 12 pt, bold and Title Case (the first letter of each word is to be capitalized).

10. Illustrations (charts, drawings, photographs, figures) are to be in the text. Use only illustrations really pertinent to the text. Illustrations must be sharp, clear, black and white. Illustrations downloaded from internet are not acceptable.

a. Illustrations should not be more than two per page. One could be ideal

- b. Figure No. and Title at bottom with 12 pt
- c. Legends below the title in 10 pt
- d. Leave proper margin in all sides
- e. Illustrations as far as possible should not be photo copied.
- 11. Photographs if any should of glossy prints

12. Please use SI system of units only.

13. Please number the pages on the front side, centrally below the footer

14. References should be either in order as they appear in the thesis or in alphabetical orderbylast name of first author

15. Symbols and notations if any should be included in nomenclature section only

16. Following will be the order of report

i. Cover page and Front page as per the specimen on separate sheet

ii. Certificate from the Institute as per the specimen on separate sheet

iii Acknowledgements

iv. List of Figures

v. List of Tables

vi. Nomenclature

vii. Contents

viii. Abstract (A brief abstract of the report not more than 150 words. The heading of abstract i.e. word "Abstract" should be bold, Times New Roman, 12 pt and should be typed at the centre. The contents of abstract should be typed on new line withoutspace between heading and contents. Try to include one or two sentences each onmotive, method, key-results and conclusions in Abstract

1 Introduction (2-3 pages) (TNR – 14 Bold) 1.1 Problem statement (TNR – 12) Curriculum for Master of Technology (MTech) (wef 2024-25) Matoshri College of Engineering and Research Centre, Eklahare, Nashik (Autonomous)

- 1.2 Objectives
- 1.3 Scope
- 1.4 Methodology
- 1.5 Organization of Dissertation

@The CO-PO Mapping Matrix								
CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	3	3	3	3	3	2	3	3
CO2	3	3	3	2	3	2	3	3
CO3	3	3	3	2	2	2	3	3
CO4	3	3	3	2	2	2	3	3
CO5	3	3	3	2	2	2	3	3
CO6	3	3	3	2	2	2	3	3